
PACIFIC JOURNAL OF MATHEMATICS

Vol. 213, No. 1, 2004

THE MACROSCOPIC SOUND OF TORI

Constantin Vernicos

Take a torus with a Riemannian metric. Lift the metric on
its universal cover. You get a distance which in turn yields
balls. On these balls you can look at the Laplacian. Focus
on the spectrum for the Dirichlet or Neumann problem. We
describe the asymptotic behaviour of the eigenvalues as the
radius of the balls goes to infinity, and characterise the flat tori
using the tools of homogenisation our conclusion being that
“Macroscopically, one can hear the shape of a flat torus”. We
also show how in the two dimensional case we can recover
earlier results by D. Burago, S. Ivanov and I. Babenko on the
asymptotic volume.

1. Introduction and claims.

Let (Tn, g) be a Riemannian torus, lift its metric on its universal cover and
use it to define first a distance, then the metric’s balls. The first thing one
can observe is the volume of these balls as a function of their radius, indeed
as the distance obtained arises from a compact quotient it is equivalent to
an Euclidean distance hence the volume of these balls is equivalent to the
Euclidean volume of an Euclidean ball i.e., proportional to the radius of the
ball to the power of n (the dimension of our torus).

We are thus naturally led to wonder what happens if one looks at the
following Riemanniann function on the balls (Bg(ρ) is the ball of radius ρ):

Volg
(
Bg(ρ)

)
ρn

as ρ → +∞.

If it is not very surprising that it converges to some constant for this limit
can be seen as a mean value due to the periodicity of the metric (see for
example Pansu [Pan82] and a slightly different and more analytical proof
in this paper Section 2.3), it is quite remarkable that this constant, called
asymptotic volume, is bounded from below by the constant arising from the
flat tori and furthermore that the case of equality caracterises the flat tori
as D. Burago and S. Ivanov showed in [BI95].

The study of the balls of large radii on the universal cover of tori (and
more generally of a nilmanifold) is what we call here the macroscopical ge-
ometry. Indeed in our case the universal cover is a real vector space, where
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some lattices acts by translation (in the more general case of nilmanifolds
one should consider a left action). Should one focus on the point of this lat-
tice endowed with the distance arising from the torus, one gets an invariant
metric on the lattice. Now if one looks at this lattice from a galaxy far, far
away, one won’t be able to distinguish the lattice from the whole universal
cover. Thus it is understandable that for this observer the distance ob-
tained on the universal cover seems invariant by all translations (for general
nilmanifolds one gets a left invariant distance).

In the case of tori this “seen from a far away galaxy” distance is a norm,
called the stable norm and was first defined by Federer in homology. It
is some kind of mean value of the metric. This asymptotic behaviour was
generalized and proved by P. Pansu for all nilmanifold [Pan82] and precised
by D. Burago [Bur92] for tori. Since then the stable normed appeared in
many other works: For surfaces and the links with Aubry-Mather theory
in D. Massart’s works, one can also find it in the weak KAM theory of
A. Fathi. It is also worth mentionning the crucial role it plays in the proof
by D. Burago and S. Ivanov [BI94] of the Hopf conjecture concerning tori
without conjugate points. Here in Part 2 we show, for the case of tori, how
one recovers the stable norm using homogenisation tools.

There is another interesting geometric invariant attached to the balls and
linked with the volume, the spectrum of the Laplacian. Indeed if one knows
the spectrum one knows the volume thanks to Weyl’s asymptotic formula.
Here again one easily sees, comparing with the Euclidean case, that the
eigenvalues converge to zero with a 1/ρ2 speed (ρ being the radius). If one
can expect a convergence when rescaled, it is quite surprising that as a limit
we obtain the spectrum of an Euclidean and not a finsler metric, indeed the
behaviour is described by the following theorem which is one of the aims of
this paper:

Theorem 1. Let (Tn, g) be a Riemannian torus, Bg(ρ) the induced metric
ball on its universal cover and λi

(
Bg(ρ)

)
the ith eigenvalue of the Laplacian

for the Dirichlet (resp. Neumann) problem.
There exists an elliptic operator ∆∞, which is the Laplacian of some

Euclidean metric on R
n, such that if λ∞

i is its ith eigenvalue for the Dirichlet
(resp. Neumann) problem on the stable’s norm unit ball then

lim
ρ→+∞

ρ2λi

(
Bg(ρ)

)
= λ∞

i .

Section 4 is devoted to the proof of this theorem and Section 3 introduces
the analytical background: Homogenisation and various convergence fairly
known by the specialist of homogenisation but adapted here to our purpose,
as it becomes after some re-spelling of the problem made in Section 2.4.
From this theorem we can deduce the following one which is some kind of “à
la” Burago-Ivanov macroscopical rigidity and which inspired the abstract:
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Theorem 2. Let (Tn, g) be a Riemannian torus, Bg(ρ) the induced metric
ball on its universal cover and λ1

(
Bg(ρ)

)
the first eigenvalue of the Laplacian

for the Dirichlet problem. Then:
(1) lim

ρ→+∞
ρ2λ1

(
Bg(ρ)

)
= λ∞

1 ≤ λe,n,

(2) equality holds if, and only if, the torus is flat,
where λe,n is the first eigenvalue of the Euclidean Laplacian on the Euclidean
unit ball.

The proof, which is done in Section 6, involves some kind of transplan-
tation for the inequality mixed with Γ-convergence for the equality. For
a better understanding of what happens we briefly give some informations
related to the Γ-convergence and adapt it to our purpose in Section 5, fol-
lowing the general ideas of K. Kuwae and T. Shioya in [KS] (who in turn
generalized U. Mosco’s paper [Mos94]), this section being completed by the
proof of Section 8.

As the macroscopical spectrum involved rises from an Euclidean metric,
we can use the Faber-Krahn inequality to obtain a new inequality regarding
the asymptotic volume, this is done in Section 7.1:

Proposition 3. Let (Tn, g) be a Riemannian torus, Bg(ρ) the geodesic balls
of radius ρ centred on a fixed point and Volg

(
Bg(ρ)

)
their Riemannian vol-

ume induced on the universal cover, writing

Asvol(g) = lim
ρ→∞

Volg
(
Bg(ρ)

)
ρn

then:

(1) Asvol(g) ≥ Volg(Tn)
VolAl(Tn)

ωn.

(2) In case of equality, the torus is flat.
Here ωn is the unit Euclidean ball’s Euclidean volume, and VolAl(Tn) is the
volume of the Albanese torus.

A surprising fact arises because this new inequality involves a constant
which happened to be at the heart of the isosystolic inequality of two dimen-
sional tori (see J. Lafontaine [Laf74]), hence we obtain an alternate proof
of the asymptotic volume’s lower boundedness in dimension two:

Corollary 4. Let (T2, g) be a 2-dimensional torus then:
(1) Asvol(g) ≥ π.
(2) In case of equality, the torus is flat.

It is worth mentionning that the case of equality in the previous claims
relies on Theorem 33, which states that the stable norm coincides with the
Albanese metric if and only if the torus is flat, and whose proof does not
rely on the work of D. Burago and S. Ivanov [BI95] or I. Babenko [Bab91].
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Thus we actually get an alternate proof of this theorem in the 2-dimensional
case.

We also give a kind of generalised Faber-Krahn inequality for normed
finite dimensional vector spaces, which implies that we cannot distinguish
the Euclidean’s ones among them using the first generalised eigenvalue of
the Dirichlet Laplacian (see Lemma 36 and its corollary):

Theorem 5 (Faber-Krahn inequality for norms). Let D be a domain of R
n,

with the norm ‖ · ‖ and a measure µ invariant by translation. Let D∗ be the
norm’s ball with same measure as D, then

λ1

(
D∗, ‖ · ‖

)
≤ λ1

(
D, ‖ · ‖

)
.

We finally explain in Section 7.2 how is our work related to works fo-
cused on the long time asymptotics of the heat kernel (see [KS00], [DZ00],
[ZKON79]) and finally in Section 7.3 we state how Theorem 1 transposes
to all graded nilmanifolds (subject which should be widely extended in a
forthcoming article).

2. Stable norm and homogenisation.

In this section we show how the stable norm, the Gromov-Hausdorff conver-
gence and the Γ-convergence of the homogenisation theory are linked and
finish by re-spelling our goal. In what follows, Bg(ρ) will be the metric ball
of radius ρ on the universal cover of a torus with the lifted metric. We first
begin by two definitions.

2.1. Convergences. We recall the definition of Γ-convergence in a metric
space:

Definition 6. Let (X, d) be a metrics space. We say that a sequence of
function (Fj) from X to R, Γ-converges to a function F : X → R if and only
if for all x ∈ X we have:

(1) For all converging sequences (xj) to x

F (x) ≤ lim inf
j→∞

Fj(xj);

(2) there exists a sequence (xj) converging to x such that

F (x) = lim
j→∞

Fj(xj).

We now introduce the Gromov-Hausdorff measured convergence in the
space M of compact metric and measured spaces (X, d, m) modulo isome-
tries. First if X and Y are in M then an application φ : X → Y is called
an ε-Hausdorff approximation if and only if we have:

(1) The ε-neighbourhood of φ(X) in Y is Y ;
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(2) for all x, y ∈ X we have∣∣∣d(x, y) − d
(
φ(x), φ(y)

)∣∣∣ ≤ ε.

We write C0(X) for the space of continues functions from X to R and A
will be a partially directed space.

Definition 7. We say that a net (Xα, dα, mα)α∈A of spaces in M converges
to (X, d, m) for the Gromov-Hausdorff measured topology if, and only if
there exists a net of positive real numbers (εα)α∈A decreasing to 0 and mα

measurable εα-Hausdorff approximations fα : Xα → X such that (fα)∗(mα)
converges vaguely to m i.e.,∫

Xα

u ◦ fα dmα →
∫

X
u dm ∀u ∈ C0(X).

2.2. The stable norm. Let (Tn, g) a Riemannian torus. We will call
rescaled metrics the metrics gρ = (1/ρ2)(δρ)∗g and their lifts on the uni-
versal cover. We will also write δρ for the homothetie of scale ρ.

In the 80’s P. Pansu showed that the distance induced on R
n as a universal

cover of a torus, behaved asymptotically like the distance induced by a norm.
In the 90’s D. Burago showed a similar result for periodic metrics on R

n. It
is that norm which is called the stable norm. To be more precise let us write
f1(x) = dg(0, x) the distance from the origin to x and fρ(x) = dg(0, δρ(x))/ρ,
then P. Pansu’s result says that there exist a norm ||.||∞ such that for all
x ∈ R

n

lim
ρ→∞

fρ(x) = ||x||∞
and Burago’s says that there exists a constant C such that for all x ∈ R

n∣∣fρ(x) − ||x||∞
∣∣ ≤ C

ρ

in other words, Pansu’s results is a simple convergence and Burago’s is a
uniform convergence result.

There is another proof of the simple convergence of the sequence (fρ) as
ρ goes to infinity, using homogenisation tools.

Theorem 8. Let g̃ the induced metric on R
n as a universal cover of a

Riemannian torus (Tn, g). Then there exists a norm ||.||∞ such that:
(1) For every bounded open I ⊂ R the sequence of functionals

Eρ(u) =
∫

I
g̃(δρu(t))

(
u′(t), u′(t)

)
dt

on W 1,2(I; Rn), Γ-converge for the L2 norm toward the functional

E∞(u) =
∫

I

∥∥u′(t)
∥∥2

∞dt;
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(2) the norm satisfies

‖ξ‖∞ = lim
t→+∞

inf
{

1
t

∫ t

0
g̃(u+ξτ)(u

′ + ξ, u′ + ξ) dτ : u ∈ W 1,2
0

(
]0, t[; Rn

)}
.

(1)

Furthermore if fρ(x) = dg(0, ρx)/ρ then for all x ∈ R
n

lim
ρ→+∞

fρ(x) = ‖x‖∞.

Proof. We use Proposition 16.1, p. 142 of A. Braides and A. Desfranceschi
[BD98]. It gives us the Γ-convergence of the sequence of functional (Eρ)
toward a functional E∞ such that

E∞(u) =
∫

I
ϕ
(
u′(t)

)
dt

with ϕ convex and satisfying the asymptotic formula (1). It remains to show
that ϕ is the square of a norm.

Homogeneity: Using the asymptotic formula (1) we easily get ϕ(0) = 0
and by a change of variables ϕ(λx) = λ2ϕ(x).

Separation: Let us point out that:
1) The minimum of the energy of a path between 0 and tξ in an Eu-

clidean space is attained for the straight line. Thus if we put into the
asymptotic formula (1) an Euclidean metric, we get the same metric.

2) Let g and h be two metrics such that for all s and ξ

gs(ξ, ξ) ≤ hs(ξ, ξ)

then for all u ∈ W 1,2
0 (]0, t[; Rn) we get

1
t

∫ t

0
g(u+ξτ)(u

′ + ξ, u′ + ξ) dτ ≤ 1
t

∫ t

0
h(u+ξτ)(u

′ + ξ, u′ + ξ) dτ

thus taking the infimum for u and taking the limit as t goes to infinity
we get

lim
t→+∞

inf
{

1
t

∫ t

0
g(u+ξτ)(u

′ + ξ, u′ + ξ) dτ : u ∈ W 1,2
0

(
]0, t[; Rn

)}
(2)

≤ lim
t→+∞

inf
{

1
t

∫ t

0
h(u+ξτ)(u

′ + ξ, u′ + ξ) dτ : u ∈ W 1,2
0

(
]0, t[; Rn

)}
.

Now let us also remark that g being periodic, there exists two strictly
positive constants α and β such that

α|ξ|2 ≤ gs(ξ, ξ) ≤ β|ξ|2

now applying the three remarks we get

α|ξ|2 ≤ ϕ(ξ) ≤ β|ξ|2

thus ϕ(ξ) = 0 if and only if ξ = 0.
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Triangle inequality: First note that

{ξ ∈ R
n | ϕ(ξ) ≤ 1} = {ξ ∈ R

n |
√

ϕ(ξ) ≤ 1} = Sn.

It follows that if
√

ϕ(ξ) = 1 = ϕ(ξ) and
√

ϕ(η) = 1 = ϕ(η) then for all
0 ≤ λ ≤ 1 by the convexity of ϕ

ϕ(λξ + (1 − λ)η) ≤ λϕ(ξ) + (1 − λ)ϕ(η) = 1

so
√

ϕ(λξ + (1 − λ)η) ≤ 1.

Thus for all non-null x, y

√
ϕ

(
λ

x
√

ϕ(x)
+ (1 − λ)

y
√

ϕ(y)

)
≤ 1

now taking λ =
√

ϕ(x)/
(√

ϕ(x) +
√

ϕ(y)
)

and using
√

ϕ homogeneity we
finally get the triangle inequality and we are able to conclude that ‖ · ‖∞ =√

ϕ(·) is a norm.
The final assertion comes from the fact that ‖ξ‖2

∞ is the limit of the
energies’ infimum along the paths between 0 and ξ for the rescaled metrics
(1/t2)(δ∗t )g, which are attained along the geodesics. �

This theorem easily induces the following assertion:

Corollary 9. For all x and y ∈ R
n we have

lim
ρ→+∞

dg(ρx, ρy)
ρ

= ‖x − y‖∞.

From now on we will write dρ(x, y) = dg(ρx, ρy)/ρ, and we are now going
to see what can be deduced for the balls Bg(ρ) in terms of Gromov-Hausdorff
convergence.

2.3. Gromov-Hausdorff convergence of metric balls. We will write
µg (resp. µρ) the measure induced by g̃ (resp. gρ). µ∞ will be the measure
of Lebesgue such that for a fundamental domain Df we have µ∞(Df ) =
µg(Df ). Finally let

Bρ(R) =
{
x ∈ R

n
∣∣ dρ(0, x) ≤ R

}
=

1
ρ
Bg(R · ρ),

and
B∞(R) =

{
x ∈ R

n
∣∣ ‖x‖∞ ≤ R

}
.

Theorem 10. The net of measured metric spaces
(
Bρ(1), dρ, µρ

)
converges

in the Gromov-Hausdorff measured topology to
(
B∞(1), ‖·‖∞, µ∞

)
as ρ goes

to infinity.
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Proof. Let us choose an ε > 0. We first show that the identity is an ε-
approximation if ρ is large enough. It suffice to show that there is a finite
family of points (x1, . . . , xN ) such that its ε-neighbourhood in

(
B∞(1), d∞

)
and, for ρ large enough, in

(
Bρ(1), dρ

)
is respectively B∞(1) and Bρ(1) and

such that for all i, j = 1, . . . , N we have∣∣‖xi − xj‖∞ − dρ(xi, xj)
∣∣ ≤ ε.

Let r > 0 and let (γ1, . . . , γN ) be all the images of 0 by the action of Z
n,

such that for i = 1, . . . , N , γi ∈ B∞(r). Then we take for i = 1, . . . , N ,
xi = γi/r. Let us remark that for ρ large enough these points will all be in
Bρ(1).

Now let us point out that, because of the invariance by the Z
n action,

there are two constants α and β such that for all x and y ∈ R
n we have

α‖x − y‖∞ ≤ dg(x, y) ≤ β‖x − y‖∞;

thus for every x ∈ B∞(1) take the closest point xi (thus γi is the closest
point of Z

n · 0 from rx) then there is a constant C (the diameter of the
fundamental domain) such that

‖x − xi‖∞ ≤ 1
αr

dg(rx, γi) ≤
1
αr

C

we also get

dρ(x, xi) ≤
β

αr
C

thus, for r large enough (x1, . . . , xN ) is an ε-neighbourhood of
(
B∞(1),

‖ · ‖∞
)
. Furthermore if ρ is large enough it is also an ε-neighbourhood

of
(
Bρ(1), dρ

)
and by Corollary 9∣∣‖xi − xj‖∞ − dρ(xi, xj)

∣∣ ≤ ε.

Now let us take a continuous function from B∞(1) to R. Let z1, . . . , zk

and ζ1, . . . , ζl in the orbit of 0 by the Z
n action such that ζj +D∩B∞(ρ) �= ∅

for j = 1, . . . l and ⋃
i

zi + Df ⊂ B∞(ρ) ⊂
⋃
k

ζk + Df

(where we took all zi such that zi + Df ⊂ B∞(ρ)) then we get∑
i

inf
ρx∈zi+Df

f(x) µ∞(Df ) ≤
∫

B∞(ρ)
f(x/ρ) dµg(x)

≤
∑

j

sup
ρx∈(ζj+Df )∩B∞(ρ)

f(x) µ∞(Df )



MACROSCOPIC SOUND OF TORI 129

now dividing by ρn we find∑
i

inf
x∈ 1

ρ
(zi+Df )

f(x) µ∞
(
(1/ρ)Df

)
≤

∫
B∞(1)

f dµρ(x)

≤
∑

j

sup
x∈ 1

ρ
(ζj+Df )∩B∞(1)

f(x) µ∞
(
(1/ρ)Df

)
.

The middle term is surrounded by two sums of Riemann, which converges
to

∫
B∞(1) f dµ∞, thus it also converges. To conclude, notice that the net of

characteristic function χBρ(1) converges simply to χB∞(1) inside of B∞(1).
�

2.4. What shall we finally study? As we said we are now going to focus
on the spectrum of the balls Bg(ρ). As we already mentioned we know that
the eigenvalues are converging to zero with a 1/ρ2 speed. Hence we want to
find a precise equivalent.

For this let introduce ∆ρ the Laplacian associated to the rescaled metrics
gρ = 1/ρ2(δρ)∗g, and for any function f from Bg(ρ) to R lets associate a
function fρ on Bρ(1) by fρ(x) = f(ρ · x). Then it is an easy computation to
see that for any x ∈ Bρ(1):

ρ2
(
∆f

)
(ρ · x) =

(
∆ρfρ

)
(x)

hence the eigenvalues of ∆ρ on Bρ(1) are exactly the eigenvalues of ∆ on
Bg(ρ) multiplied by ρ2 and our problems becomes the study of the spectrum
of the Laplacian ∆ρ on Bρ(1). In the light of what precedes we would like
to show that there is some operator ∆∞ acting on B∞(1) such that, in
some sense, the net of Laplacian (∆ρ) converges towards ∆∞ such that the
spectra also converge to the spectrum of ∆∞. The next section aims at
giving a precise meaning to this.

3. Convergence of spectral nets.

This section adapts to our purpose some notion of convergences well-known
for a fixed Hilbert space.

3.1. Convergence on a net of Hilbert spaces. Let (Xα, dα, mα)α∈A,
where A is a partially ordered set, be a net of compact measured met-
ric spaces converging to (X∞, d∞, m∞) in the Gromov-Hausdorff measured
topology. We will write L2

α = L2(Xα, mα) (resp. L2
∞(X∞, m∞)) for the

square integrable function spaces. Their respective scalar product will be
〈·, ·〉α (resp. 〈·, ·〉∞) and ‖ · ‖α (resp. ‖ · ‖∞).

Furthermore we suppose that in every L2
α the continuous functions form

a dense subset.
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Definition 11. We say that a net (uα)α∈A of functions uα ∈ L2
α strongly

converges to u ∈ L2
∞ if there exists a net (vβ)β∈B ⊂ C0(X∞) converging to

u in L2
∞ such that

lim
β

lim sup
α

‖f∗
αvβ − uα‖α = 0;

where (fα) is the net of Hausdorff approximations. We will also talk of
strong convergence in L2.

Definition 12. We say that a net (uα)α∈A of functions uα ∈ L2
α weakly

converges to u ∈ L2
∞ if and only if for every net (vα)α∈A strongly converging

to v ∈ L2
∞ we have

lim
α
〈uα, vα〉α = 〈u, v〉∞.(3)

We will also talk of weak convergence in L2.

The following lemmas justify those two definitions:

Lemma 13. Let (uα)α∈A be a net of functions uα ∈ L2
α. If (‖uα‖α) is

uniformly bounded, then there exists a weakly converging subnet.

Proof. Let (φk)k∈N be a complete orthonormal basis of L2
∞. Using the den-

sity of continuous functions in L2
∞, for each k we can retrieve a net of

continuous functions (ϕk,β)β∈B strongly converging to φk in L2
∞. Replacing

by a subnet of A and B if necessarily, we can assume that the following limit
exists:

lim
β

lim
α
〈uα, f∗

αϕ1,β〉α = a1 ∈ R

and from the uniform bound hypothesis it follows that a1 ∈ R. Repeating
this procedure we can assume that for every k ∈ N the following limit exists:

lim
β

lim
α
〈uα, f∗

αϕk,β〉α = ak ∈ R.

Let us fix an integer N . For any ε > 0 there is a βε ∈ B such that∣∣〈ϕk,β , ϕl,β〉∞ − δkl

∣∣ < ε

for any β ≥ βε and k, l = 1, . . . , N . Moreover for any β ≥ βε there is an
αε,β ∈ A such that ∣∣〈f∗

αϕk,β , f∗
αϕl,β〉α − δkl

∣∣ < 2ε

for any α ≥ αε,β and k, l = 1, . . . , N . Let Lα,β = Vect{f∗
αϕk,β | k =

1, . . . , N} and Pα,β : L2
α → Lα,β be the projection to the linear subspace

Lα,β ⊂ L2
α we have∣∣∣∣∣

N∑
k=1

∣∣〈uα, f∗
αϕk,β〉α

∣∣2 − ‖Pα,βuα‖2
α

∣∣∣∣∣ ≤ θN (ε)
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for every α ≥ αε,β and β ≥ βε, where θN is a function depending only of N
such that limε→0 θN (ε) = 0. This implies for every N

N∑
k=1

|ak|2 = lim
β

lim
α

N∑
k=1

∣∣〈uα, f∗
αϕk,β〉α

∣∣2 = lim
β

lim
α

‖Pα,βuα‖2
α

≤ lim sup
α

‖uα‖2
α < ∞

thus

u =
N∑

k=1

akφk ∈ L2
∞.

We shall prove that some subnet of (uα)α weakly converges to u. Take any
v ∈ L2

∞ and set bk = 〈v, φk〉∞. By the properties of the strong convergence
it is enough to show (3) for a well chosen net. Let vN

β =
∑N

k=1 bkϕk,β . By
construction vN

β ∈ C0 and limN→∞ limβ vN
β = v strongly. We have

lim
β

lim
α
〈uα, f∗

αvN
β 〉α = lim

β
lim
α

N∑
k=1

bk〈uα, f∗
αϕk,β〉α =

N∑
k=1

akbk

which tends to 〈u, v〉∞ as N → ∞. Thus, there exists a net of integers (Nβ)β

tending to +∞ such that v
Nβ

β strongly converges to v and

lim
β

lim
α
〈uα, f∗

αv
Nβ

β 〉α = 〈u, v〉∞.

�
Lemma 14. Let (uα)α∈A be a weakly converging net to u ∈ L2

∞. Then

sup
α

‖uα‖α < ∞ and ‖u‖∞ ≤ lim inf
α

‖uα‖α.

Furthermore, the net strongly converges if and only if

‖u‖∞ = lim
α

‖uα‖α.

Proof. Let suppose that the net (uα) is weakly converging and supα ‖uα‖α =
+∞. We can extract a sequence such that ‖uαk

‖αk
> k. Setting

vk =
1
k

uαk

‖uαk
‖αk

one has ‖vk‖αk
= 1/k → 0 thus vk strongly converges to 0, which implies

〈uαk
, vk〉αk

→ 〈u, 0〉∞ = 0

but we also have
〈uαk

, vk〉αk
=

1
k
‖uαk

‖αk
≥ 1

this is a contradiction and thus we obtain supα ‖uα‖α < ∞.
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Let (wα)α be a strongly converging net to u, then

0 ≤ lim inf
α

‖uα − wα‖2
α

= lim inf
α

(
‖uα‖2

α + ‖wα‖2
α − 2〈uα, wα〉α

)
= lim inf

α
‖uα‖2

α − ‖u‖2
∞.

The final claim comes from the properties of the strong convergence and the
following equality:

‖uα − wα‖2
α = ‖uα‖2

α + ‖wα‖2
α − 2〈uα, wα〉α.

�
3.2. Convergence of bounded operators. Let L(L2

α) bet the set of linear
bounded operators acting on L2

α and ‖ · ‖Lα their norm (for α ∈ A ∪ ∞).
Let B∞ ∈ L(L2

∞) and Bα ∈ L(L2
α) for every α ∈ A.

Theorem and Definition 15. Let u, v ∈ L2
∞ and (uα)α∈A, (vα)α∈A two

nets such that uα, vα ∈ L2
α. We say that the net of operators (Bα)α∈A

strongly (resp. weakly, compactly) converges to B if Bαuα → Bu strongly
(resp. weakly, strongly) for every net (uα) strongly (resp. weakly, weakly)
converging to u ⇐⇒

lim
α
〈Bαuα, vα〉α = 〈Bu, v〉∞(4)

for every (uα), (vα), u and v such that uα → u strongly (resp. weakly,
weakly) and vα → v weakly (resp. strongly, weakly).

Proof. The equivalence comes from the definition of the weak convergence
and the fact that a net (uα) strongly converges to u if and only if 〈uα, vα〉α →
〈u, v〉∞ for every net (vα)α weakly converging to v ∈ L2

∞. The “if” part is
straightforward, for the “only if” we see that for every net (vα) strongly
converging to v we have 〈uα, vα〉α → 〈u, v〉∞, which implies the weak con-
vergence of the net (uα). Using now the hypothesis we get the convergence
of the net ‖uα‖α and thus the strong convergence of (uα) by Lemma 14. �
Proposition 16. Let (Bα) be a strongly converging net to B then

lim inf
α

‖Bα‖Lα ≥ ‖B‖L∞

and if the convergence is compact then it is an equality and B is a compact
operator as is its adjoint B∗.

Proof. Let ε > 0, there is u ∈ L2
∞ such that ‖u‖∞ = 1 and ‖Bu‖∞ >

‖B‖L∞ − ε. Take (uα)α a net converging strongly to u. Then ‖uα‖α → 1,
furthermore the strong convergence of (Bα) implies that ‖Bαuα‖α → ‖Bu‖∞
thus

lim inf
α

‖Bα‖Lα ≥ lim inf
α

‖Bαuα‖α

‖uα‖α
= ‖Bu‖∞ > ‖B‖L∞ − ε.
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Suppose now that the convergence is compact. Take a net (uα) such that
‖uα‖α = 1 and

lim
α

∣∣‖Bα‖Lα − ‖Bαuα‖α

∣∣ = 0.

Extracting a subnet if necessary we can suppose that the net (uα) weakly
converges to u. By Lemma 14 we have ‖u‖∞ ≤ 1, furthermore the compact
convergence implies the strong convergence of Bαuα to Bu thus

‖B‖L∞ ≥ ‖Bu‖∞
‖u‖∞

≥ ‖Bu‖∞ = lim
α

‖Bαuα‖α = lim
α

‖Bα‖Lα .

Now let us prove that in the latest case, B is compact. Let (vβ)β∈B a net
weakly converging to v in L2

∞ then

〈u, Bvβ〉∞ = 〈B∗u, vβ〉∞ → 〈B∗u, v〉∞ = 〈u, Bv〉∞
thus Bvβ weakly converges to Bv. For every β let (uα,β) be a strongly con-
verging net such that limα uα,β = vβ. For every β the compact convergence
of (Bα) implies the strong convergence of Bαuα,β to Bvβ. Now let us take
a net of positive numbers such that limβ ε(β) = 0, then there is α(β) such
that for every α ≥ α(β) we have∣∣‖Bαuα,β‖α − ‖Bvβ‖∞

∣∣ ≤ ε(β).

Set wβ = uα(β),β then limβ wβ = v weakly and by the compact convergence
we obtain the strong convergence of (Bα(β)wβ)β to Bv but

lim
β

∣∣‖Bα(β)wβ‖α(β) − ‖Bvβ‖∞
∣∣ = 0

which implies ‖Bvβ‖∞ → ‖Bv‖∞. We can conclude using Lemma 14. �

3.3. Convergence of spectral structures. Here we see L2
α as a Hilbert

space. Then Aα and A will be self-adjoint operators, Eα and E their re-
spective spectral measure and Rµ, R their resolvents for µ in the resolvent
space. We want to study the links between the convergence of (Aα), (Eα)
and (Rα

µ). The following theorem says that it is the same:

Theorem 17. Let (Aα) and A be self-adjoint operators Eα, E their spectral
measures and Rα

µ, Rµ their resolvents for µ in the resolvent space, then the
following assertions are equivalent:

(1) Rα
µ → Rµ strongly (resp. compactly) for µ outside the union of the

spectra of Aα and A.
(2) ϕ(Aα) → ϕ(A) strongly (resp. compactly) for every continuous func-

tion, with compact support ϕ : R → C.
(3) ϕα(Aα) → ϕ(A) strongly (resp. compactly) for every net {ϕα : R → C}

of continuous functions vanishing at infinity and uniformly converging
to ϕ a continuous function vanishing at infinity.

(4) Eα

(
]λ, µ]

)
→ E

(
]λ, µ]

)
strongly (resp. compactly) for every pair of real

numbers outside the spectrum of A.
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(5) 〈Eαuα, vα〉α → 〈Eu, v〉∞ vaguely for every net of vectors (uα)α∈A and
(vα)α∈A such that uα → u strongly (resp. weakly) and vα → v weakly.

Let us recall that a quadratic form Q on a complex (resp. real) Hilbert
space H comes from a sesquilinear (resp. bilinear) form, positive and sym-
metric E : D(E)×D(E) → C (resp. R) where D(E) ∈ H is a linear subspace
and Q(u) = E(u, u). Notice that E1(u, v) = 〈u, v〉H +E(u, v) for every u and
v ∈ D(E) is also a sesquilinear (resp. bilinear), symmetric and positive form.
Thus

(
D(E), E1

)
is a pre-Hilbert space. We say that Q is closed if and only

if
(
D(E), E1

)
is a Hilbert space. In what follows, we will not distinguish Q

and the functional E defined by E(u) = Q(u) on D(E) and E(u) = ∞ on
H\D(E). In this context, Q is closed if and only if E is lower semi-continuous
as a function E : H → R.

Definition 18. Let (Eα) be a net of closed quadratic forms, where Eα is a
closed quadratic form on L2

α for every α ∈ A. We will say that this net is
asymptotically compact if and only if for every net (vα)α∈A such that

lim sup
α

Eα(vα) + ‖vα‖2
α < ∞

there is a strongly converging subnet.

Now a spectral structure on a Hilbert space H over C (resp. R) is a
family

Σ = {A, E , E, (Tt), (Rζ)}
where A is a self-adjoint operator seen as the infinitesimal generator of the
densely defined quadratic form E (such that D(E) = D(

√
A) and E(u, v) =

〈
√

Au,
√

Av〉H for every u and v in D(E)), E is its spectral measure, (Tt)t≥0 is
a one parameter semi-group of strongly continuous contractions (Tt = e−tA,
t ≥ 0) and Rζ is a strongly continuous resolvent (Rζ = (ζ − A)−1 for
ζ ∈ ρ(A), where ρ(A) is the resolvent set of A). In what follows we will
study a family of spectral structures Σα on L2

α, thus we will have

Σα = {Aα, Eα, Eα, (Tα
t ), (Rα

ζ )}.

Definition 19. Let (Σα)α∈A be a net with Σα a spectral structure on L2
α

and Σ a spectral structure on L2
∞, we will say that the net (Σα)α strongly

(resp. compactly) converges to Σ if and only if one of the conditions of
Theorem 17 is satisfied.

Proposition 20. Let (Σα)α∈A of spectral structures strongly converging to
Σ then for any net (vα)α weakly converging to v we have

E(v) ≤ lim inf
α

Eα(vα).

Furthermore, if the net (Σα)α∈A converges compactly, then the net of qua-
dratic forms (Eα)α is asymptotically compact.
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Proof. Assume that the net of resolvents (Rα
λ) is strongly convergent and

write
aλ

α(u, v) = −λ〈u − λRα
λu, v〉α

(the Deny-Yosida approximation of bilinear form associated to Eα), then
the net (aλ

α(u, u)) converges to Eα(u) increasing when λ → −∞ (see Mosco
[Mos94] 1.(i)). From the assumption it easy to see that for (uα) and (vα)
converging strongly to u and weakly to v respectively

lim
α

aλ
α(uα, vα) = −λ〈u − λRλu, v〉∞ = aλ(u, v)

we recall that (see Dal Maso [Mas93] Proposition 12.12)

aλ(u, u) ≥ aλ(v, v) + 2λ〈v − λRλv, u − v〉∞
hence for any net vα weakly converging to u and wα a strongly converging
net to u we have

Eα(vα) ≥ aλ
α(vα, vα) ≥ aλ

α(wα, wα) + 2λ〈wα − λRα
λwα, vα − wα〉

thus lim infα Eα(vα) ≥ aλ(u, u) for any λ < 0, now taking λ → −∞ we can
conclude that lim infα Eα(vα) ≥ E(u).

Now assume that (Σα) compactly converges and let (uα)α∈A be a net such
that

sup
α

(
Eα(uα) + ‖uα‖2

α

)
≤ M < ∞.

Taking a subnet if necessary we can suppose that (uα)α weakly converges
to u. Let ρ > 0 be out of A∞’s spectrum. As∫

]ρ,∞[
d〈Eαuα, uα〉α ≤ 1

ρ

∫
]ρ,∞[

λd〈Eα(λ)uα, uα〉α ≤ Eα(uα)
ρ

≤ M

ρ

we have

‖uα‖2
α ≤

∫
[0,ρ]

d〈Eαuα, uα〉α +
M

ρ

and the compact convergence implies

lim
α

∫
[0,ρ]

d〈Eαuα, uα〉α =
∫

[0,ρ]
d〈Eu, u〉∞

hence

lim sup
α

‖uα‖2
α ≤

∫
[0,ρ]

d〈Eu, u〉∞ +
M

ρ
≤ ‖u‖2

∞ +
M

ρ

and taking ρ → ∞ we get

lim sup
α

‖uα‖2
α ≤ ‖u‖2

∞

finally we deduce the strongly convergence of the net (uα) using Lemma 14.
�
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The main reason we introduced all these convergences is the following
theorem, the proof of which we postpone to avoid drowning the reader in
too many technical details.

Theorem 21. Let Σα → Σ compactly and suppose that all resolvents Rα
ζ

are compact. Let λk (resp. λα
k ) be the kth eigenvalue of A (resp. Aα) with

multiplicity. We take λk = +∞ if k > dim L2
∞ + 1 when dim L2

∞ < ∞ and
λα

k = +∞ if k > dim L2
α + 1 when dim L2

α < ∞. Then for every k

lim
α

λα
k = λk.

Furthermore let {ϕα
k | k = 1, . . . ,dim L2

α} be an orthonormal bases of L2
α

such that ϕα
k is an eigenfunction of Aα for λα

k . Then there is a subnet such
that for all k ≤ dim L2

∞ the net (ϕα
k )α strongly converges to the eigenfunc-

tion ϕk of A for the eigenvalue λk, and such that the family {ϕk | k =
1, . . . ,dim L2

α} is an orthonormal basis of L2
∞.

4. Proof of Theorem 1.

4.1. Homogenisation of the Laplacian. In this section we are going to
built the operator ∆∞ of Theorem 1. We remind the reader that Df is
a fundamental domain, we then begin by taking χi as the unique periodic
solution (up to an additive constant) of

∆χi = ∆xi on Df .

The operator ∆∞ is then defined by

∆∞f = − 1
Vol(g)

(∫
Df

gij − gik ∂χj

∂yk
dµg

)
∂2f

∂xi∂xj
.(5)

Now let us write ηj(x) = χj(x) − xj the induced harmonic function and

qij = d
1

Vol(g)

(∫
Df

gij − gik ∂χj

∂yk
dµg

)
we can notice that the dηi are harmonic 1-forms on the torus. It is not
difficult now to show that:

Proposition 22. Let 〈·, ·〉2 be the scalar product induced on 1-forms by the
Riemannian metric g. Then

qij =
1

Vol(g)
〈dηi, dηj〉2 = qji

thus ∆∞ is an elliptic operator.

In fact we can say more, (qij) induces a scalar product on harmonic 1-
forms (whose norm will be written ‖ · ‖2) and then to H1(T, R). Indeed, as
mentioned earlier, we can see the (dηi) as 1-forms over the torus. Being a free
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family they can be seen as a basis of H1(T, R) (Hodge’s theorem). Thus by
duality this yields also a scalar product (qij) over H1(T, R) (whose induced
norm will be written ‖ · ‖∗2). The question naturally arising is to know the
link between this norm and the stable norm. To see this we have to go back
on H1(T, R). Indeed the stable norm is the dual of the norm obtained by
quotient of the sup norm on 1-forms (see Pansu [Pan99] Lemma 17), which
we write ‖ · ‖∗∞, and the norm ‖ · ‖2 comes from the normalised L2 norm.
Thus mixing the Hölder inequality and the Hodge-de Rham theorem we get:

Proposition 23. For every 1-form α we have

‖α‖2 ≤ ‖α‖∗∞
thus by duality, for every γ ∈ H1(T, R) we have

‖γ‖∞ ≤ ‖γ‖∗2
in other words the unit ball of ‖ · ‖∗2 is included in B∞(1).

To finish this section, let us remark that the manifold H1(T, R)/H1(T, Z)
with the flat metric induced by ‖ · ‖∗2 is usually called the Jacobi manifold
or the Albanese torus of (T, g).

4.2. Asymptotic compactness. Let us now define the various functional
spaces involved. For ρ ∈ R, L2

(
Bρ(1), dµρ

)
will be the space of square

integrable functions over the ball Bρ(1), which is a Hilbert space with the
scalar product

(u, v)ρ =
∫

Bρ(1)
uv dµρ

whose norm will be | · |ρ. H1
ρ,0

(
Bρ(1)

)
will be the closure of C∞(

Bρ(1)
)

functions with compact support, in H1
ρ

(
Bρ(1)

)
for the norm ‖ · ‖ρ defined

by

‖v‖2
ρ = |v|2ρ +

n∑
i=1

∣∣∣∣∣ ∂v

∂xi

∣∣∣∣∣
2

ρ

and with

H1
ρ

(
Bρ(1)

)
=

{
v

∣∣∣∣ v,
∂v

∂x1
, . . . ,

∂v

∂xn
∈ L2

(
Bρ(1), dµρ

)}
.

For all that follows, Vρ will be a closed sub-space such that

H1
ρ,0

(
Bρ(1)

)
⊂ Vρ ⊂ H1

ρ

(
Bρ(1)

)
.

Thus we can define a spectral structure on L2
ρ by expanding the Laplacian

defined on Vρ on L2
ρ. If Vρ = H1

ρ,0

(
Bρ(1)

)
we deal with the Dirichlet problem,

and if Vρ = H1
ρ

(
Bρ(1)

)
we then deal with the Neumann problem. We then

put the following norm on Vρ:

‖v‖2
ρ,0 = |v|2ρ + (v,∆ρv)ρ
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we then have:

Lemma 24. Let (uρ)ρ be a net with uρ ∈ Vρ for every ρ, if there is a
constant C such that for all ρ > 0 we have

‖uρ‖ρ,0 ≤ C

then there is a strongly converging subnet in L2.

Proof. Let B = ∪ρBρ(1) we are going to show that the strong convergence
in L2(B, µ∞) implies the strong convergence in L2. Then the compact em-
bedding of H1

∞
(
B

)
in L2

(
B, µ∞

)
will conclude the proof.

Let us first notice that the periodicity gives the existence of two constant
α and β such that

α|v|∞ ≤ |v|ρ ≤ β|v|∞.

Let us start by taking a net (uρ) strongly converging in L2(B, µ∞) to u∞
we also assume uρ ∈ Vρ for every ρ, because it is all we need. Now let
cp ∈ C∞

0

(
B∞(1)

)
be a sequence of functions strongly converging to u∞ and

take p large enough for the support of up to be in Bρ(1). We have

|cp − uρ|ρ ≤ β|cp − u∞|∞ + β|u∞ − uρ|∞
now let ε > 0 then for p large enough β|cp − u∞|∞ ≤ ε. We fix p large
enough and take ρ large enough for the second term to converge to 0.

In order to conclude observe that from the assumptions the net (uρ)
is bounded in H1

∞
(
B

)
, hence using the compact embedding of H1

∞
(
B

)
in

L2(B, µ∞) we can extract a strongly converging net in L2(B, µ∞) and by
what we just did in L2. �

4.3. Compact convergence of the resolvents. Let λ > 0 and Gρ
λ be the

operator from L2
ρ to Vρ ⊂ L2

ρ such that

aρ
λ(Gρ

λf, φ) = (f, φ)ρ ∀φ ∈ Vρ,(6)

where

aρ
λ(u, v) =

∫
Bρ(1)

gij
ρ ∂iu · ∂jv dµρ + λ(u, v)ρ.

We want to show that the net of operators (Gρ
λ) converges compactly to Gλ

the operator corresponding to the homogenised problem:

a∞λ (Gλf, φ) = (f, φ)∞ ∀φ ∈ V∞(7)

with (f, φ)∞ =
∫
B∞(1) fφ dµ∞ and

a∞λ (u, v) =
∫

B∞(1)
qij ∂iu ∂jv dµ∞ + λ(u, v)∞

in other words we want to show the following theorem:
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Theorem 25. For every λ < 0, the net of resolvents (Rρ
λ)ρ of the Laplacian

(∆ρ) converges compactly to R∞
λ , the resolvent of ∆∞ from the homogenised

problem. Thus the net (Σρ) compactly converges to Σ∞.

Proof. This comes from the fact that Rρ
λ = −Gρ

−λ and R∞
λ = −G−λ.

First step:
Let fρ be a weakly convergent net to f in L2, thus from Lemma 14 this

net is uniformly bounded in L2 and in V ′
ρ, the dual space of Vρ.

Let fρ ∈ Vρ then by (6) we have:

α‖Gρ
λfρ‖2

ρ,0 ≤ (fρ, G
ρ
λfρ)ρ ≤ K‖fρ‖V ′

ρ
‖Gρ

λfρ‖ρ,0

thus
‖Gρ

λfρ‖ρ,0 ≤ C‖fρ‖V ′
ρ

the net (Gρ
λfρ) being uniformly bounded for the norms ‖·‖ρ,0, using Lemma 13

there is a subnet strongly converging in L2. i.e.,

uρ = Gρ
λfρ → u∗

λ strongly in L2.(8)

Furthermore Pρ = (gij
ρ )∇Gρ

λfρ is also bounded in L2 thus there is a subnet
of the net Pρ weakly converging in L2 to P ∗

λ ∈ L2
∞. For any φ∞ ∈ L2

∞ let
φρ be a strongly converging net to φ∞ in L2 then∫

Bρ(1)
Pρ ·∇φρ dµρ + λ(Gρ

λfρ, φρ)ρ = (fρ, φρ)ρ →(9) ∫
B∞(1)

P ∗
λ ·∇φ∞ dµ∞ + λ(u∗

λ, φ∞)∞ = (f, φ∞)∞.

Thus it is enough to show that P ∗
λ =

(
qij

)
∇u∗

λ on B∞(1) because it induces
u∗

λ = Gλf .

Second step:
We first take χk(y) (see 4.1) such that M(χk) = 0 and we define

wρ(x) = xk − 1
ρ
χk(ρx)(10)

for every k = 1, . . . , d1. Then

wρ → xk strongly in L2,(11)

and by construction of χk (see 4.1) we have

−∂i

(
det(gρ)1/2gij

ρ ∂jwρ

)
= 0 on Bρ(1).(12)

We multiply this equation by a test function φ ∈ Vρ and after an integration
we get ∫

Bρ(1)
gij
ρ ∂jwρ ∂iφ dµρ = 0.(13)
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Let ϕ ∈ C∞
0 (B∞(1)) (notice that for ρ large enough the support of ϕ will be

in Bρ(1)) and φ = ϕwρ which we put into Equation (6) and into Equation
(13) we put φ = ϕuρ (see (8)), and then we subtract the results:∫

Bρ(1)
gij
ρ

(
∂juρ ∂iϕ wρ − ∂jwρ ∂iϕ uρ

)
dµρ(14)

=
∫

Bρ(1)
fρwρϕ dµρ − λ

∫
Bρ(1)

ϕuρwρ dµρ.

Now let ρ → ∞ in (14), all terms converge because they are product of
one strongly converging net and one weakly converging net in L2. More
precisely:

• Pρ defined Pρ,i = gij
ρ ∂juρ weakly converges to P ∗

λ in L2 following (9).
• ∂iϕwρ strongly converges to ∂iϕxk in L2 from (11).
• gij

ρ ∂iwρ is Df/ρ-periodic and weakly converges in L2 towards its mean
value

qjk = M
(

gij(y)
(
δik − ∂iχ

k(y)
))

.

• ∂jϕuρ strongly converges to ∂jϕu∗
λ by (8), because ϕ has compact

support.
• Now for the right side, wρ strongly converges as uρ does and fρ weakly

converges to f .
To summarise (14) converges to (we write P ∗

λ,i the coordinates of P ∗
λ )∫

B∞(1)

(
P ∗

λ,jxk − qjku∗
λ

)
∂jϕ dµ∞(15)

=
∫

B∞(1)
fxkϕ dµ∞ − λ

∫
B∞(1)

ϕu∗
λxk dµ∞

furthermore if we put into Equation (9), φ∞ = ϕxk it gives∫
B∞(1)

fxkϕ dµ∞ − λ

∫
B∞(1)

ϕu∗
λxk dµ∞ =

∫
B∞(1)

P ∗
λ,j∂j(ϕxk) dµ∞(16)

and by mixing (15) and (16) we get for every ϕ ∈ C∞
c (B∞(1)) the following

equality:∫
B∞(1)

(
P ∗

λ,jxk − qjku∗)∂jϕ dµ∞ =
∫

B∞(1)
P ∗

λ,j∂j(ϕxk) dµ∞

which in terms of distribution can be translated into:

−
d1∑

j=1

∂j

(
P ∗

λ,jxk − qjku∗
λ

)
= −

d1∑
j=1

∂jP
∗
j xk ⇐⇒ P ∗

λ,k =
d1∑

j=1

qjk ∂ju
∗
λ

which allow us to conclude that u∗
λ = Gλf . �

It is now easy to finish the proof of Theorem 1, it comes from Theorem 25
and Theorem 21.
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5. Γ-convergence of quadratic forms.

5.1. Γ and Mosco-convergence of quadratic forms. We are now going
to give a definition of Γ-convergence adapted to our problem.

Definition 26 (Γ-convergence). We say that a net {Fα : L2
α → R}α∈A of

functions Γ-converges to F : L2
∞ → R if and only if the following assertions

are satisfied:
(F1) For any net (uα)α∈A ∈ L2

α strongly converging to u ∈ L2
∞ in L2 we

have
F (u) ≤ lim inf

α
Fα(uα).

(F2) For every u ∈ L2
∞ there is a net (uα)α∈A ∈ L2

α strongly converging to
u in L2 such that

F (u) = lim
α

Fα(uα).

Remark. This is slightly different from Definition 6, which is the usual one.
By taking Fα infinite outside of L2

α in L2 we get back (in some way) the
usual definition (see the introduction of [Mas93]).

Let us summarise some properties satisfied by this convergence.

Lemma 27.
(a) Let {Fα : L2

α → R}α∈A be a net of functions Γ-converging to a function
F : L2

∞ → R, then F is lower semi-continuous.
(b) Let (Eα)α∈A be a net of quadratic forms Eα on L2

α Γ-converging to a
function F : L2

∞ → R, then F can be identified with a quadratic form
on L2

∞.

There is also the following result, concerning compactness:

Theorem 28. From every net (Eα)α∈A of quadratic forms Eα on L2
α we can

extract a Γ-converging subnet, whose limit is a quadratic form on L2
∞.

Remark. This theorem is true for a wider variety of functions, with some
restrictions on {L2

α}ν∈A. Of course the limit in that case is not always a
quadratic form. Here it is Lemma 27 which gives information on the limit.

Definition 29 (Mosco topology). We say that a net (Eα)α∈A of quadratic
forms Eα on L2

α Mosco-converges to the quadratic form E on L2
∞ if condition

(F2) of Definition 26 and (F1′) are satisfied:
(F1′) For any (uα)α∈A, uα ∈ L2

α weakly converging net to u ∈ L2
∞ in L2 we

have
E(u) ≤ lim inf

α
Eα(uα).

The induced topology is called the Mosco topology.

It is obvious that the Mosco-convergence induces the Γ-convergence, thus
this topology is stronger. Let us now define one last convergence:
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Definition 30 (Compact Γ-convergence). We say that a net (Eα)α∈A Γ-
converges compactly to E if Ea → E in the Mosco topology an if (Ea)a∈A is
asymptotically compact.

Let us show precisely how the Mosco and the Γ topologies are linked:

Lemma 31. Let us suppose (Eα)α∈A asymptotically compact then (Eα)α∈A
Γ-converges to E is and only if (Eα)α∈A Mosco-converges to E.

Proof. We just need to show that the Γ-convergence implies the condition
(F1′) from Definition 29. We proceed ad absurdum and suppose that there
is a weakly converging net (uα) such that lim infα Eα(uα) < E(u). Taking a
subnet if necessarily we can suppose lim Eα(uα) < E(u) thus we also have
lim supα Eα(uα) + ‖uα‖2

α < +∞. The asymptotic compactness is obviously
inherited by a subnet thus we can extract a strongly converging subnet uα(β).
The Γ-convergence being also inherited by a subnet of Eα we finally get

lim Eα(uα) = lim
β

Eα(β)(uα(β)) ≥ E(u)

which is absurd. �

5.2. Γ-convergence and spectral structures. The following theorem ex-
plains how the convergence of spectral structures and the Mosco-convergence
are related:

Theorem 32. Let (Σα) be a net of spectral structures on (L2
α) and Σ a

spectral structure on L2
∞ then Σα −→Σ strongly (resp. compactly) if and

only if Eα Mosco-converges (resp. Γ-converges compactly) to E.

Proof. We are going to prove the equivalence between the strong (resp. com-
pact) convergence of resolvents and the Mosco-convergence (resp. compact
Γ-convergence) of the energies.

Let us begin by assuming the Mosco-convergence of the net (Eα). We
need to show that for every z ∈ L2

∞ and any net (zα) strongly converging to
z the net uα = −Rα

λzα strongly converges to u = −Rλz. First let us notice
that the vector u is the unique minimiser of

v �→ E(v) − λ‖v‖2
∞ − 2〈z, v〉∞

we can characterise the same way uα for every α.
As an operator of L2

α, Rα
λ is bounded by −λ−1. Thus the net (uα) is

bounded and we can extract a weakly converging subnet, still written (uα),
with limit ũ. Now from condition (F2) for every v ∈ L2

∞ there is a net
strongly converging to it such that limα Eα(vα) = E(v). But for every α

Eα(uα) − λ‖uα‖2
α − 2〈zα, uα〉α ≤ Eα(vα) − λ‖vα‖2

α − 2〈zα, vα〉α(17)

thus taking the limit in α ∈ A we get thanks to condition (F1′) of Defini-
tion 29 and the fact that for any weakly convergent net ‖ũ‖∞ ≤ lim infα ‖uα‖α
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(remember that λ < 0)

E(ũ) − λ‖ũ‖2
∞ − 2〈z, ũ〉∞ ≤ E(v) − λ‖v‖2

∞ − 2〈z, v〉∞
which implies ũ = −Rλz. Due to u’s unicity, we conclude that (uα) weakly
converges to u. Let us prove that ‖uα‖α converges to ‖u‖∞. In that aim
take a strongly convergent net vα to v such that limα Eα(vα) = E(u), and
take a new look at inequality (17):

Eα(uα) − λ‖uα + zα/λ‖2
α ≤ Eα(vα) − λ‖vα + zα/λ‖2

α

using (F1′) once again we find

E(v) − λ lim sup
α

‖uα + zα/λ‖2
α ≤ E(v) − λ‖u + z/λ‖2

∞

thus ‖uα + zα/λ‖2
α → ‖u + z/λ‖2

∞ which implies the strong convergence of
(uα + zα/λ)α and the strong convergence of (zα) induces the strong conver-
gence of (uα).

We shall now study the compact Γ-convergence. Let us take a weakly con-
vergent net wα to w and let uα = −Rα

λwα, then the net uα is still bounded.
Swapping zα with wα in (17) we get that lim supα Eα(uα) is bounded, and
thanks to the asymptotic compactness we can extract a strongly convergent
subnet with ũ its limit. Putting this in (17), with zα = vα where (vα) a
strongly converging net to v we get

E(ũ) − λ‖ũ‖2 − 2〈w, ũ〉 ≤ E(v) − λ‖v‖2 − 2〈w, v〉
thus ũ = −Rλw. Once again, thanks to unicity, we conclude that Rα

λwα

strongly converges to Rλw.
Reciprocally assume that for every λ < 0 the net Rα

λ strongly converges
to Rλ. In what follows (uα) will be a strong convergent net to u.

Condition (F1′): Already done, see Proposition 20.

Condition (F2): Extract a subnet λα → −∞ such that

E(u, u) ≥ lim
λ

lim
α

aλ
α(uα, uα) ≥ lim

α
aλα

α (uα, uα)

take wα = λαRα
λα

uα for every α and notice that

aλ
α(uα, uα) = −λ〈uα − λRα

λuα, uα〉α − λ〈uα − λRα
λuα,−λRα

λuα〉α
+ λ〈uα − λRα

λuα,−λRα
λuα〉α

= −λ‖uα − λRα
λuα‖2 + λ2〈uα − λRα

λuα,−Rα
λuα〉α

= −λ‖uα − λRα
λuα‖2 + Eα(λRα

λuα)

indeed if aα is the bilinear form corresponding to Eα then Rα
λuα can be seen

as the sole element such that

aα(−Rα
λuα, vα) − λ〈−Rα

λuα, vα〉α = 〈uα, vα〉α, ∀vα ∈ D(Eα)
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hence
aλα

α (uα, uα) = Eα(wα, wα) − λα‖uα − wα‖2

which implies wα → u strongly in L2 and

E(u, u) ≥ lim sup
α→+∞

Eα(wα, wα).

For the compact convergence case it suffices to prove the asymptotic com-
pactness, but it has already been done in the proof of Proposition 20. �

6. Proof of Theorem 2.

The convergence of the eigenvalue is given by Theorem 1. Hence it remains
to bound the asymptotic λ1 (i.e., the limit) and characterise the equality.
The proof we propose consists in finding an upper bound of λ1

(
Bg(ρ)

)
for

every ρ using a function depending of the distance from the centre of the
ball. We then use the simple convergence of the distances (dρ) to the stable
norm as seen in Section 2.2 and the measure part of Theorem 10.

Proof. Let f be a continuous function from R to R and define

fρ : Bρ(1) → R

x �→ f
(
dρ

(
0, x)

)
and f∞(x) = f

(
‖x‖∞

)
on B∞(1). We want to show that (remember that

δρ(x) = ρx) ∫
fρ · χBg(ρ) ◦ δρdµρ −→

ρ→∞

∫
B∞(1)

f∞ dµ∞.(18)

To obtain this we are going to cut the difference in three pieces, i.e.,∣∣∣∣∣
∫

fρ · χBg(ρ) ◦ δρ dµρ −
∫

B∞(1)
f∞ dµ∞

∣∣∣∣∣
≤

∣∣∣∣∣
∫

fρ ·
(
χBg(ρ) ◦ δρ − χB∞(1)

)
dµρ

∣∣∣∣∣(19)

+

∣∣∣∣∣
∫

B∞(1)

(
fρ − f∞

)
dµρ

∣∣∣∣∣(20)

+

∣∣∣∣∣
∫

B∞(1)
f∞ dµρ −

∫
B∞(1)

f∞ dµ∞

∣∣∣∣∣.(21)

Now it suffices to notice that:
1) Part (19) goes to 0 because inside we have the product of χBg(ρ) ◦

δρ − χB∞(1), which is easily seen to simply converge to 0 thanks to
Corollary 9, with bounded terms compactly supported.

2) Same reason for (20) because fρ − f∞ simply converges to 0.
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3) Finally the convergence to 0 of (21) is due once again to the measure
part of Theorem 10.

As a conclusion we have (18). Injecting now fρ into the Raleigh’s quotient
we get:

ρ2λg

(
Bg(ρ)

)
≤

∫ (
(f ′)ρ

)2 · χBg(ρ) ◦ δρ dµρ∫
(fρ)2 · χBg(ρ) ◦ δρ dµρ

.

We apply the limit (18) to obtain

lim sup
ρ→∞

ρ2λg

(
Bg(ρ)

)
≤

∫
B∞(1)

(
(f ′)∞

)2
dµ∞∫

B∞(1)
f2
∞ dµ∞

and now taking for f the right function (i.e., the solution of the differential
equation f ′′ + n−1

x f ′(x) + λe,nf = 0) we can conclude.
Let us now study the equality case. Take again the function f which

gives the eigenfunction of the Euclidean Laplacian on the Euclidean unit
ball (i.e., the solution of f ′′ + n−1

x f ′(x) + λe,nf = 0) and normalise it. The
Γ-convergence theory allows to say, taking Eρ and E∞ as the energies of ∆ρ

and ∆∞ on the balls Bρ(1) and B∞(1) respectively for the adapted measures
and thanks to Proposition 20 and Theorem 1

E∞(f∞) ≤ lim inf
ρ→∞

Eρ(fρ) ≤ lim sup
ρ→∞

Eρ(fρ) ≤ λe,n.(22)

Now from the equality assumption we have

λe,n ≤ E∞(f∞),(23)

thus (22) and (23) imply equality which in turn imply that f∞ is an eigen-
function for the first eigenvalue . Hence f∞ is smooth (at least in a neigh-
bourhood of zero).

Now from the study of Bessel’s function (see [Bow58], §103-§105) we see
that taking p = (n− 2)/2 we have f(x) = x−pJp

(√
λex

)
with Jp an analytic

function defined by (see F. Bowman [Bow58] §84)

Jp(x) =
xp

2pΓ(p + 1)

(
1 − x2

2 · 2n + 2
+

x4

2 · 4 · 2n + 2 · 2n + 4
+ · · ·

)
thus f has the following shape:

f(x) =
λp

e

2pΓ(p + 1)

(
1 − x2λe

2 · 2n + 2
+

x4λ2
e

2 · 4 · 2n + 2 · 2n + 4
+ · · ·

)
in other words f has the following asymptotic expansion: 1+α1x

2+α2x
4+· · ·

(up to a multiplicative constant). Now notice that the function 1 + α1x +
α2x

2 + · · · admits an inverse g ∈ C∞ in a neighbourhood of zero, which
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implies that g◦f∞(x) = cst·‖x‖2
∞ is C2 in a neighbourhood of zero, thus the

stable norm comes from a scalar products, which means that it is Euclidean.
In fact we have some more informations. Indeed in order for f∞ to be an

eigenfunction, the norme of the differential of the stable norm with respect
to the Albanese metric (the scalar product giving the Laplacian ∆∞) must
be almost everywhere equal to one (a simple computation using the fact that
the stable norm is Euclidean and the Cauchy-Schwartz inequality). Which
implies that the unit ball of the Albanese metric must be inside the unit ball
of the stable norm. Now the maximum principle and the monotony with
respect to inclusion of the eigenvalues implies that equality holds if and only
if the stable norm and the Albanese metric coincides. The stable norm being
the Albanese metric we can now use Theorem 33 to conclude. �
Theorem 33. Let (Tn, g) be a torus, its stable norm coincides with the
Albanese metric if and only if the torus is flat.

Proof. Let us take a base η1, . . . , ηn of Harmonic one forms, any function
α and any 2-form β. We shall write (·, ·)g the pointwise scalar product
induced by g on forms (‖ · ‖g the associated norm) and 〈·, ·〉g the integral
scalar product normalized by the volume. Then by Hodge’s theorem

‖ηi‖2
∞ = inf

α,β
sup
x∈Tn

‖ηi‖2
g + ‖dα‖2

g + ‖δβ‖2
g ≥ sup

x∈Tn
‖ηi‖2

g

and
〈ηi, ηi〉g =

1
Vol g(Tn)

∫
Tn

‖ηi‖2
gdvol g ≤ sup

x∈Tn
‖ηi‖2

g

the case of equality implies that 〈ηi, ηi〉g = (ηi, ηi)g(x) for all x ∈ T
n. Now

it suffices to see that the metric g can be written in the following way:∑
i,j

λijηi ◦ ηj = g

where ηi ◦ ηj = 1/2(ηi ⊗ ηj + ηj ⊗ ηi) and Λ = (λij) is the matrice such that
Λ−1 =

(
〈ηi, ηj〉g

)
. Now taking local fi such that dfi = ηi then the function

F (x) = (f1(x), . . . , fn(x)) is an isometry between an open set of T
n and an

eucliean space, thus the torus is flat. �

7. Related topics.

In that section we come back to the asymptotic volume, proving in the
meantime a generalised Faber-Krahn inequality. Then we explain what can
be deduced from our work for the heat kernel and how it is related to other’s
work. We finally state how Theorem 1 passes to graded nilmanifolds.
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7.1. Asymptotic volume of tori.

7.1.1. Generalised Faber-Krahn inequality. We need some more defi-
nitions.

Definition 34. For a rectifiable submanifold N of R
n (we can think of it of

finite adapted Hausdorff measure) we will write I(N) the associated integral
current. For an integral current C, M(C) will be its mass as defined par
H. Federer (see [Fed69] for example).

Definition 35. Let R
n, with the norm ‖ · ‖ (‖ · ‖∗ will be the dual norm),

we define

λ1

(
Ω, ‖ · ‖

)
= inf

f

∫
Ω
‖df‖2

∗dµ∫
Ω

f2dµ

where µ is the Lebesgue measure on R
n, and the infimum is taken over all

Lipschitz functions vanishing on the border.

The following lemma holds:

Lemma 36 (Faber-Krahn inequality for norms). Let D be a domain of R
n,

with the norm ‖ · ‖ and a measure µ invariant by translation. Let D∗ be the
norm’s ball with same measure as D, then

λ1

(
D∗, ‖ · ‖

)
≤ λ1

(
D, ‖ · ‖

)
(24)

the equality case implying that D is a norm’s ball.

Proof. We need two ingredients for this proof. The first is an isoperimetric
inequality, which is given by a result of Brunn (see a proof by M. Gromov in
[MS86]). The second is a co-area formula, which can be found in Federer
[Fed69] p. 438.

More specifically, let us write Gt = {x | |f(x)| = t} then on one side we
have ∫

Ω
hα ∧ df =

∫ sup f

0

∫
Gt

hα|Gt
dt =

∫ sup f

0
I|f |=t(hα)dt

and on the other ∫
Ω
‖df‖∗dµ =

∫ sup f

0
M(I|f |=t)dt(25)

(see P. Pansu [Pan99]) where dµ is the translation invariant volume form
on R

n such that the norm’s ball of radius one has measure 1.
Take α =

1
|df |2 ∗ df where ∗ is the Hodge operator on differential forms

over R
n then we get ∫

Ω
hdµ =

∫ sup f

0

∫
Gt

hα|Gt
dt.
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Now take a look at the same equality on Ωt =
{
x | |f(x)| > t

}
i.e.,∫

Ωt

hdµ =
∫ sup f

t

∫
Gt

hα|Gt
dt =

∫ sup f

t
I|f |=t(hα)dt.(26)

Differentiating each member of equality (26) we get almost everywhere the
following equality: ∫

Gt

hα|Gt
= I|f |=t(hα).(27)

Taking into account (27) and (25) we obtain∫
Gt

‖df‖∗α|Gt
= M(I|f |=t).(28)

Applying the Cauchy-Schwartz inequality to the left side of (28) and making
the appropriate identification thanks to (27) we finally have

M(I|f |=t)2

I|f |=t(α)
≤ I|f |=t

((
‖df‖∗

)2
α
)
.(29)

The function f∗ associated to f by symmetrisation is Lipschitz. Thus it
satisfies a similar co-area formula. Hence we have for almost all t

I|f |=t(α) = − d

dt
Vol(Ωt) = − d

dt
Vol(Ω∗

t ) = I|f∗|=t(α
∗).(30)

Now using Brunn’s isoperimetric inequality (see [MS86]) we have

M(I|f∗|=t) ≤ M(I|f |=t).(31)

Injecting (30) and (31) in (29) and noticing that ‖df∗‖∗ is constant on {|f | =
t}, which implies that the equivalent of (29) for f∗ is an equality we get (for
almost all t)

I|f∗|=t

((
‖df∗‖∗

)2
α∗

)
=

M(I|f∗|=t)2

I|f∗|=t(α∗)
≤

M(I|f |=t)2

I|f |=t(α)
(32)

≤ I|f |=t

((
‖df‖∗

)2
α
)
.

Now we sum the extremal terms of (32) to obtain the desired inequality:∫
Ω∗

(
‖df∗‖∗

)2
dv ≤

∫
Ω

(
‖df‖∗

)2
dv

which allows us to conclude the proof because∫
Ω∗

(f∗)2dv =
∫

Ω
(f)2dv.

For the equality case, it suffices to see that it implies the equality case in
Brunn’s isoperimetric inequality to conclude. �

Let us notice that this lemma immediately implies:
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Corollary 37. Let D1 be the unit ball of the norm ‖ · ‖. Then

λ1(D1) = λe,n.

Thus

λe,n

(
µ(D1)
µ(D)

) 2
n

≤ λ1

(
D, ‖ · ‖

)
where µ is a Haar measure on R

n.

Proof. The symmetrisation from the previous theorem shows that the min-
imum of the Rayleigh’s quotient is obtained with functions depending on
the distance from the centre of the ball. Hence we are led to the same
calculations as in the Euclidean case. �
7.1.2. Lower bound for the asymptotic volume. We are now going
to apply the generalised Faber-Krahn inequality to λ∞. With that aim in
mind let us notice that λ∞

(
B∞(1)

)
= λ1

(
B∞(1), ‖ · ‖∗2

)
with the dual norm

of ‖ · ‖∗2 defined by
‖ξ‖2 =

∑
ij

qijξiξj

and let us write BAl the unit ball of ‖ · ‖∗2. We now can apply the inequality
of Lemma 36 and more precisely its Corollary 37:

λ∞
(
B∞(1)

)
≥

(
µ(BAl)

µ
(
B∞(1)

))2/n

λe,n

where µ is any Haar measure. Now applying Theorem 2 we get(
µ(BAl)

µ
(
B∞(1)

))2/n

λe,n ≤ λe,n.(33)

We finally get the following proposition taking in (33) the Haar measure
such that the measure of B∞(1) is the asymptotic volume (i.e., the measure
µ∞) and transforming the other term in order to make the Albanese torus’s
volume appear.

Proposition 3. Let (Tn, g) be a Riemannian torus, Bg(ρ) the geodesic balls
of radius ρ centred on a fixed point and Volg

(
Bg(ρ)

)
their Riemannian vol-

ume induced on the universal cover, writing

Asvol(g) = lim
ρ→∞

Volg
(
Bg(ρ)

)
ρn

then:

(1) Asvol(g) ≥ Volg(Tn)
VolAl(Tn)ωn.

(2) In case of equality, the torus is flat.
Here ωn is the unit Euclidean ball’s Euclidean volume.
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Proof. There remains the equality case to be proved, which can be obtained
using either the equality case of the Faber-Krahn inequality, which says
that B∞(1) is an ellipsoid either the equality case of Theorem 2 and then
we conclude by using Theorem 33. �

We still have two remarks concerning this proposition, the first one is
included in the following corollary:

Corollary 4. For n = 2 we have:
(1) Asvol(g) ≥ π = ω2.
(2) In case of equality, the torus is flat.

In other words we obtain the theorem of D. Burago and S. Ivanov on
the asymptotic volume of tori in the 2 dimensional case (see [BI95]). The
second remark is that we can not do better this way. See [Ver01] Part
Three for more details.

7.2. Long time asymptotics of the heat kernel. Let (Tn, g) be a torus
and (Rn, g̃) its universal cover with the lifted metric. We remind the reader
that gρ = (1/ρ2)δ∗ρ g̃ are the rescaled metrics and ∆ρ their Laplacian, here it
will be on R

n.
We are going to study from the homogenisation point of view the long

time asymptotic behaviour of the heat kernel i.e., we are interested in the
behaviour as t goes to infinity of a solution u(t, x) of the following problem:

∂u

∂t
+ ∆u = 0 in ]0, +∞[ × R

n

u(0, x) = u0(x).
(34)

For a probabilistic insight one could see M. Kotani and T. Sunada [KS00].
Let us introduce the rescaled functions

uρ(t, x) = ρnu(ρ2t, δρx), ρ > 0.

It is straightforward that (see. Section 2.4) u is a solution of (34) if and only
if uρ is a solution of

∂uρ

∂t
+ ∆ρuρ = 0 in ]0, +∞[ × R

n

uρ(0, x) = ρnu0(δρx),
(35)

hence studying u(t, ·) as t goes to infinity is the same as studying uρ(1, ·) as
ρ → ∞. In other words we are once again lead to the study of the spectral
structures (∆ρ) on R

n. We have:

Theorem 38. The net of resolvents (Rρ
λ) weakly converges to the resolvent

(R∞
λ ) of ∆∞ in L2(Rn).



MACROSCOPIC SOUND OF TORI 151

Remark. The proof is the same as 25. In fact in that case we would rather
talk of G-convergence. We now can apply the theorems from Chapter III of
[ZKON79], more precisely Theorems 4 and 6.

Theorem 39 ([ZKON79] p. 136). The fundamental solution k(t, x, y) of
(34) has he following asymptotic expansion:

k(t, x, y) = k∞(t, x, y) + t−
n
2 θ(t, x, y)

where k∞(t, x, y) is fundamental solution of
∂u∞
∂t

+ ∆∞u∞ = 0 in ]0, +∞[ × R
n(36)

and θ(t, x, y) → 0 uniformly as t → ∞ on |x|2 + |y|2 ≤ at, for any fixed
constant a > 0.

Remark. This is slightly weaker than Theorem 1 of M. Kotani and T. Suna-
da in [KS00].

Theorem 40 ([ZKON79] p. 138). Let u0 ∈ L1 (Rn) ∩ L∞ (Rn). Then
u(t, x) the solution of (34) has the following asymptotic expansion:

u(t, x) = c0(4πt)−
n
2

∫
Rn

u0(y)dy + t−
n
2 θ(t, x)

where θ(t, x) converges uniformly to 0 for |x| < R where R is a positive
constant and c0 is the determinant of the matrix associated to ∆∞.

That last claim can be made precise by:

Theorem 41 (Duro, Zuazua [DZ00]). Let u0 ∈ L1(Rn). The sole solution
of (34) satisfies for every p ∈ [1, +∞[:

tn/2(1−1/p)‖u(t) − u∞(t)‖p → 0, as t → +∞(37)

where u∞ is the unique solution of the homogenised problem (36). For n = 1
and n = 2 (37) is also true for p = ∞.
7.3. The macroscopical sound of graded nilmanifolds. In this part we
want to emphasise the fact that Theorem 1 is still true for graded nilman-
ifolds, at least for the Dirichlet case, but it involves some sub-Riemannian
geometry. We just give the statement. The details are to be found in [Ver01]
Chapter Two.

Theorem 42. Let (Mn, g) be graded nilmanifold, Bg(ρ) the induced Rie-
mannian ball of radius ρ on its universal cover and λi

(
Bg(ρ)

)
the ith eigen-

value of the Laplacian on Bg(ρ) for the Dirichlet problem.
Then there exists an hypoelliptic operator ∆∞ (the Kohn Laplacian of a

left invariant metric), whose ith eigenvalue for the Dirichlet problem on the
stable ball is λ∞

i and such that

lim
ρ→∞

ρ2λi

(
Bg(ρ)

)
= λ∞

i .
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Here the stable ball is the metric ball given by the Carnot-Caratheodory
distance found in [Pan82] and arising from the stable norm.

8. Proof of Theorem 21.

Let (Σα) be a net of spectral structures and let us focus on the spectra. For
a fixed operator σ(·) will be its spectrum. Let us begin with the case of
strong convergence.

Proposition 43. If Σα → Σ strongly, then for any λ ∈ σ(A) there is λα ∈
σ(Aα) such that the net (λα) converges to λ, this is written

σ(A) ⊂ lim
α

σ(Aα).

Proof. Let λ ∈ σ(A) and ε > 0 and take ζ = λ + iε then:

‖Rα
ζ ‖Lα =

1
infρ∈σ(Aα) |ζ − ρ| and ‖Rζ‖L∞ =

1
infρ∈σ(A) |ζ − ρ| =

1
ε
.

From the assumption, the net of resolvents strongly converges hence by
Proposition 16

lim sup
α

inf
ρ∈σ(Aα)

|ζ − ρ| ≤ ε

and as it is true for any ε, we can conclude. �
Lemma 44. For any reals a,b out of the spectra of A such that −∞ ≤ a-
< b ≤ +∞ then

a ≤ E(u)
‖u‖2

∞
≤ b for every u ∈ E

(
]a, b]

)
L2
∞ \ {0}.

(where E
(
]a, b]

)
= E

(
]a,+∞[

)
if b = +∞).

Proof. Let a < b two reals out of the spectra of A and

u ∈ E
(
]a, b]

)
L2
∞ \ {0},

then ∫
]a,b]

dEu = E
(
]a, b]

)
u = u =

∫
R

dEu.

Thus 〈Eu, u〉 = 0 on R \ ]a, b]. Now if u ∈ D(A),

E(u) = 〈Au, u〉 =
∫

R

λ d〈E(λ)u, u〉 =
∫

]a,b]
λ d〈E(λ)u, u〉

and the last term satisfies

a‖u‖2
∞ = a

∫
]a,b]

d〈E(λ)u, u〉

≤
∫

]a,b]
λ d〈E(λ)u, u〉 ≤ b

∫
]a,b]

d〈E(λ)u, u〉 = b‖u‖2
∞.

�
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For any Borel set I ⊂ R we write n(I) = dimE(I)L2
∞ and nα(I) =

dim Eα(I)L2
α.

Proposition 45. Let a < b two reals out of the point spectrum of A. If
Σα → Σ strongly then

lim inf
α

nα

(
]a, b]

)
≥ n

(
]a, b]

)
and in particular,

lim inf
α

dim L2
α ≥ dim L2

∞.

Proof. Let us consider an orthonormal basis {ϕk | k = 1, . . . , n
(
]a, b]

)
} of

E
(
]a, b]

)
L2
∞. Let n ∈ N be a fixed number if n

(
]a, b]

)
= ∞ else n = n

(
]a, b]

)
.

Then there are nets ϕα
k ∈ L2

α for k = 1, . . . , n such that limα ϕα
k = ϕk. As

Eα

(
]a, b]

)
→ E

(
]a, b]

)
strongly, taking ψα

k = Eα

(
]a, b]

)
ϕα

k we get

lim
α

ψα
k = E

(
]a, b]

)
ϕk = ϕk

hence
lim
α
〈ψα

i , ψα
j 〉α = 〈ϕi, ϕj〉 = δij

from which we deduce that (ψα
k )k=1,...,n is a free family for α large enough

and
lim
α

nα

(
]a, b]

)
≥ n.

This proves the first assertion. For the second it comes from the fact that
n
(
]a, b]

)
converges to dim L2

∞ as a → −∞ and b → +∞. �
Let us now have a look at the compact convergence case:

Theorem 46. If Σα → Σ compactly converges, then for any a,b out of the
point spectrum of A such that a < b for α large enough we have nα

(
]a, b]

)
=

n
(
]a, b]

)
. In particular the limit of the sets σ(Aα) coincides with σ(A).

Proof. The compact convergence implies that the operators Rζ , Tt and
E

(
]λ, µ]

)
are compact (see Proposition 16). Thus the spectrum of A is

discrete and n
(
]a, b]

)
< ∞ if a < b < ∞. Let (0 ≤)λ1 ≤ λ2 ≤ · · · ≤ λn be

the spectrum of A, where
n = 0 if the spectrum is empty,

n ∈ N if the spectrum is finite, and
n = ∞ if the spectrum is a sequence converging to infinity.

Step 1. Fix ε0 and let Λα
1 = E

(
]−∞, λ1 + ε0]

)
L2

α and Λ1 = L2
∞, where

λ1 = λ1 + ε0 = ∞ if n = 0. Let

µ1 = lim inf
α

inf
{
Ea(u) | ‖u‖α = 1, u ∈ Λα

1

}
.

Lemma 44 allows us to say that limα nα

(
]−∞, µ]

)
= 0 for any µ ∈ ]−∞, µ1[.

Applying Proposition 45 we get n
(
]−∞, µ]

)
= 0, in other words for any
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µ ≤ µ1 then µ ≤ λ1 thus µ1 ≤ λ1. Hence if µ1 = +∞, n = 0 and L2
α = 0 for

α large enough and the theorem is proved in that case.
Suppose that µ1 < +∞. For α large enough we can find unit vectors

ϕα
1 ∈ Λα

1 such that lim infα Eα(ϕα
1 ) = µ1. From the asymptotic compactness

of Eα we can extract a subnet (ϕα
1 )α∈A such that ϕ1 = limα ϕα

1 strongly and
thanks to Definition 20 E(ϕ1) ≤ µ1. The strong convergence induces the
convergence of the norms hence ‖ϕ1‖ = 1 and

λ1 = inf
{
E(u) | ‖u‖ = 1, u ∈ Λ1

}
≤ E(ϕ1) ≤ µ1 < +∞.

As a consequence n ≥ 1, λ1 = µ1 = E(ϕ1) and ϕ1 is eigenvector of A for λ1.
Furthermore let us notice that as Eα

(
]λ1−ε, λ1 +ε]

)
→ E

(
]λ1−ε, λ1 +ε]

)
strongly for any ε > 0 fixed and E

(
]λ1 − ε, λ1 + ε]

)
→ E

(
{λ1}

)
strongly

when ε → 0 there is a net of positives numbers εα
1 → 0 such that Eα

(
]λ1 −

εα
1 , λ1 + εα

1 ]
)
→ E

(
{λ1}

)
strongly. From this we obtain a net

ψα
1 = Eα

(
]λ1 − εα

1 , λ1 + εα
1 ]

)
ϕα

1 → E
(
{λ1}

)
ϕ1 = ϕ1.

Step 2. Let Λα
2 = E

(
]−∞, λ2 + ε0]

)
L2

α ∩ 〈ϕα
1 〉⊥, Λ2 = 〈ϕ1〉⊥ and

µ2 = lim inf
α

inf
{
Ea(u) | ‖u‖α = 1, u ∈ Λα

2

}
.

Again Lemma 44 allows us to say that limα nα

(
]−∞, µ]

)
= 0 for any µ ∈(

]µ1, µ2[
)

and Proposition 45 that µ2 ≤ λ2. Hence if µ2 = +∞, we have
n = 1 and L2

α = 〈ψα
1 〉 for α large enough. Assume µ2 < ∞. Take the unitary

vectors ϕα
2 ∈ Λα

2 such that lim infα Eα(ϕα
2 ) = µ2. Then the same discussion

as Step 1 gives n ≥ 2, λ2 = µ2 and the strong convergence of a subnet of
(ϕα

2 ) to ϕ2 an eigenvector of A for the eigenvalue λ2. We also find a net
εα
2 → 0 such that ψα

2 = Eα

(
]λ2 − εα

2 , λ2 + εα
2 ]

)
L2

α → ϕ2. Now let us notice
that for any ε > 0 there is αε ∈ A such that for all α ≥ αε we have:

(1) ψα
i ∈ Eα

(
]λi − ε, λi + ε]

)
L2

α for i = 1,2;
(2) if λ1 + 2ε < λ2 then

Eα

(
]λ1 − ε, λ1 + ε]

)
L2

α = 〈ψα
1 〉 and Eα

(
]λ1 + ε, λ2 − ε]

)
L2

α = 0.

Step 3. We repeat this procedure. Setting

Λα
k = E

(
]−∞, λk + ε0]

)
L2

α ∩ 〈ψα
1 , . . . , ψα

k−1〉⊥

we have
λk = µk = lim inf

α
inf

{
Ea(u) | ‖u‖α = 1, u ∈ Λα

k

}
for k ≤ n. Let k ∈ {1, 2, . . . , n} and ε > 0 be sufficiently small compared
with k. Then, there exists αk,ε ∈ A such that for any α ≥ αk,ε:

(1) For each λ ∈ {λ1, . . . , λk−1} with λ < λk,

Eα

(
]λ − ε, λ + ε]

)
L2

α = 〈ψα
i | pλ ≤ i ≤ qλ〉,

where pλ = min{i ∈ N | λi = λ} and qλ = max{i ∈ N | λi = λ};
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(2) for each i = 1, . . . , k − 1 with λi < λi+1,

Eα

(
]λi + ε, λi+1 − ε]

)
L2

α = {0}.

Conclusion. Let a,b ∈ R
+ \ σ(A) two given real numbers such that

a < b, then from what precedes we have for α large enough

Eα

(
]a, b]

)
L2

α = 〈ψα
k | k = 1, . . . , n with a < λk ≤ b〉.

Thus nα

(
]a, b]

)
coincides with the number k such that a < λk ≤ b, in other

words n
(
]a, b]

)
. �

The proof of Theorem 21 is the same as above, but defining the Λα
k with

the help of the ϕα
k .
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Université de Neuchâtel
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