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THE LENGTH OF HARMONIC FORMS
ON A COMPACT RIEMANNIAN MANIFOLD

PAUL-ANDI NAGY AND CONSTANTIN VERNICOS

Abstract. We study (n + 1)-dimensional Riemannian manifolds with har-
monic forms of constant length and first Betti number equal to n showing that

they are 2-step nilmanifolds with some special metrics. We also characterize,
in terms of properties on the product of harmonic forms, the left-invariant
metrics among them. This allows us to clarify the case of equality in the sta-
ble isosytolic inequalities in that setting. We also discuss other values of the
Betti number.

1. Introduction

Let (Mn, g) be a compact oriented Riemannian manifold. Recently, the length
of harmonic forms appeared to play a singular part in different geometric problems.

For example, in dimension 4, recent work of C. Lebrun [Leb02] shows a strong
interplay between the length of harmonic self-dual 2-forms of the manifold and
the non-vanishing of Seiberg-Witten invariants, in particular the existence of a
symplectic structure.

Another setting where the length of harmonic forms naturally arises are the
geometrically formal Riemannian manifolds. These are closed oriented Riemannian
manifolds such that the product of two harmonic forms is still harmonic. They have
the property that all harmonic forms have constant pointwise norm (see [Kot01]).
In particular their first Betti number cannot be one less than the dimension and if
it equals the dimension, then it is a flat torus.

The main goal of this note is to investigate, under some simple topological con-
ditions, Riemannian metrics on compact oriented manifolds having the property
that the length of any harmonic 1-form is (pointwise) constant. Our first result
gives a precise metric and topological description of closed, oriented Riemannian
manifolds all of whose harmonic 1-forms are of constant length, in the case when
the first Betti number is one less than the dimension.

Theorem 1. The compact oriented Riemannian manifolds (Mn+1, g) with b1(M) =
n and all their harmonic 1-forms of constant length are in one-to-one correspondence
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with triples (h, ω, c) where:
(1) h is a flat metric on an n-torus T n;
(2) c is a positive real constant;
(3) ω is a closed 2-form representing a non-zero integral class in the deRham

cohomology group H2
DR(T ).

In fact, these metrics are explicitely given by a simple geometrical construction:
given a triple (h, c, ω) as in Theorem 1, one uses Chern-Weil theory to get a principal
S1-bundle S1 ↪→ Nn+1 π→ T equipped with a principal connexion form θ and whose
curvature form is Ω = 2πω. Theorem 1 then says that (M, g) is isometric with
(N, gθ), where the bundle-like metric gθ is given by

gθ = π?h+ c2θ ⊗ θ.
A more detailed discussion of this family of metrics, which we call in what follows
minimal bundle-like metrics, will be given in section 3. Note that, when M is
fixed, the moduli space of metrics g satisfying the assumptions of the Theorem 1
is infinite dimensional, a fact significant in subsequent application. It is also worth
mentioning that the manifolds N are in fact 2-step nilmanifolds with 1-dimensional
center.

The relatively simple observation in Theorem 1 has a number of direct interesting
implications, in at least two differently arising contexts, that we list below.

1.1. The macroscopic spectrum of a nilmanifold is given by the asymptotic
behaviour of the eigenvalues of a Laplace-Beltrami operator acting on the function
on the metric balls of the universal covering of a nilmanifold, as the radius of the
balls goes to infinity. In [Ver02] the second author showed that the first eigenvalue
of this macroscopic spectrum satisfies an inequality, whose equality case is attained
by the nilmanifolds having all harmonic 1-forms of constant norm. This shows that
the nilmanifolds with left-invariant metrics are not the only ones satisfying the
equality case, as in the torus case. Hence Theorem 1 gives the following corollary
in that setting:

Corollary 2. Let (Mn+1, g) be a nilpotent Riemannian manifold, with first Betti
number b1 = n. Let Bg(ρ) be the ball of radius ρ induced by the lifted metrics on the
universal covering of Mn+1. Let λ1

(
Bg(ρ)

)
be the first eigenvalue of the laplacian

acting on functions over Bg(ρ) for the Dirichlet problem. Then there are some
functions λ∞1 (g) and λal1 (g) such that

lim
ρ→∞

ρ2λ1

(
Bg(ρ)

)
= λ∞1 (g) ≤ λal1 (g)

with equality if and only if Mn+1 is a 2-step nilmanifold with 1-dimensional center
and g a minimal bundle-like metric.

1.2. Another application of Theorem 1 is related to the borderline case of isosys-
tolic stable inequalities, studied recently by V. Bangert and M. Katz in [BK03a]
(see also references therein), which give lower bounds on the volume of compact
orientable manifolds in terms of some short closed geodesics (systols). More pre-
cisely, it is proven that for any closed oriented manifold (Xn+1, g) with b1(X) > 0,
the following holds:

stsys1(g)sysn(g) ≤ γ′b1(X)volg(X),(1)
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where stsys1(g) is the stable 1-systol of the metric g, sysn(g) denotes the infimum
of the n-volumes of all non-separating hypersurfaces in Xn+1 and γ′b1(X) is the
Bergé-Martinet constant. If equality is attained, then all harmonic one-forms are
of constant length [BK03b]. Hence Theorem 1 together with the precise description
(see [BK03b]) of the Albanese torus of such a metric yields

Corollary 3. Let (Xn+1, g) be a compact, oriented, (n+1)-dimensional Riemann-
ian manifold with first Betti number b1(X) = n. Then equality occurs in (1) if and
only if Xn+1 is a 2-step nilmanifold and g is a minimal bundle-like metric with
base torus of the form Rn/L, where L is a dual critical lattice in Rn.

Hence in the three-dimensional case, equality is only satisfied by the three-
dimensional Heisenberg group endowed with a metric such that there is a Rie-
mannian submersion onto an equilateral torus.

We are also able to characterize, in terms of product of harmonic forms (lead by
the geometrically formal background), the left-invariant metrics among the mini-
mal bundle-like metrics, in the case of the Betti number being one less than the
dimension (see Theorems 10 to 12).

These last results might be compared with the work in [ACGR], where it is shown
that an n-dimensional oriented manifold M having n − 1 small (compared to the
diameter) eigenvalues (for the laplacian acting on one-forms) is diffeomorphic to a
nilmanifold with a metric close to a left-invariant one. In their paper the authors
needed strong assumptions on the curvature. In this note, instead of a control of
the curvature, we have a control of the length of harmonic forms. We would like to
stress that this seems to be a hidden assumption on the curvature.

2. Implication of the existence of harmonic forms

of constant length

2.1. The Albanese map. Let (Mn, g) be a compact oriented Riemannian mani-
fold having all of its harmonic one forms of constant length.

We stress that we do not consider the case where there are harmonic forms
of constant length, but the case when all harmonic forms are supposed to be of
constant length. This implies for example that the pointwise scalar product of two
harmonic forms is constant, which is not the case with just the existence assumption
as the following example shows (which happens to answers question 7 of section 10
in [BK03b]):

Example 4. Let (Mn, g) be Riemannian manifold, T 2 a torus, and consider
Nn+2 = Mn × T 2 endowed with the Riemannian metric h = g ⊕ s, where s is
defined as follows. If f : M → R is a smooth function such that f2 < 1, we define
s on T 2 by setting s(dx, dx) = 1 = s(dy, dy) and s(dx, dy) = f . We claim that
(the closed) 1-forms α1 = dx and α2 = dy are also co-closed thus harmonic, but by
construction, their scalar product is not constant.

Proof. Let us take (ei)1≤i≤n+2 a local orthonormal basis of Nn+2, with (ek)1≤k≤n
spanning TM , and en+1, en+2 spanning TT 2. Consider also (Xi)i=1,2 the dual
vector field with respect to h of (αi)i=1,2. Then remark that Xi = x1

i
∂
∂x +x2

i
∂
∂y and

ek = E1
k
∂
∂x + E2

k
∂
∂y , where (xji )i,j=1,2 and (Eik) are functions from M to R. Now

write
−d∗αi =

∑
1≤k≤n+2

h(∇ekXi, ek).
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As the Levi-Civita connection is torsion free, we remark that for i = 1, 2 and
1 ≤ k ≤ n+ 2

h(∇ekXi, ek) = h(∇Xiek, ek) + h([Xi, ek], ek).

However for i = 1, 2 and 1 ≤ k ≤ n+ 2

h(∇Xiek, ek) =
1
2
Xi · h(ek, ek) = 0

and noticing that for 1 ≤ k ≤ n, [ ∂∂x , ek] = [ ∂∂y , ek] = 0 we obtain

[Xi, ek] = [x1
i
∂
∂x + x2

i
∂
∂y , ek] = −(ek · x1

i )
∂
∂x − (ek · x2

i )
∂
∂y .

Since ∂
∂x and ∂

∂y are in TT 2 we get that for all 1 ≤ k ≤ n and i = 1, 2,

h(∇ekXi, ek) = 0.

Now for k = n+ 1, n+ 2 we have

[Xi, ek] = [x1
i

∂

∂x
+ x2

i

∂

∂y
,E1

k

∂

∂x
+ E2

k

∂

∂y
].

However, for any function f define on M , TT 2 ∈ ker df and noticing that [ ∂∂x ,
∂
∂y ] =

0, we finally get that αi is indeed harmonic. �

Let b1 be the first Betti number of our manifold M . Using an integral basis of
harmonic 1-forms we can define, by integration, the Albanese (or Jacobi) map π;
this gives a map onto a torus T b1, on which we put the usual flat metric. In our
case, as all harmonic 1-forms are of constant length, we are allowed to choose this
basis to be (pointwisely) orthonormal. Therefore π is a Riemannian submersion;
besides we must have b1 ≤ n. Moreover Albanese’s map being harmonic (see
A. Lichnerowicz [Lic69]; it is also a harmonic morphism in the sense of [BE81]), the
fibers are minimal (see J. Eells and J.M. Sampson [ES64] and 9.34 of [Bes87], page
243).

A Theorem of R. Hermann (see Theorem 9.3 in [Bes87], page 235) states that
a Riemannian submersion whose total space is complete is a locally trivial fibre
bundle. We sum all this up in the following proposition.

Proposition 5. Let (Mn, g) be a compact Riemannian manifold and b1 be its first
Betti number. Then all harmonic 1-forms are of constant length if and only if
(Mn, g) is a locally trivial fiber bundle, with minimal fibers, over a b1-dimensional
flat torus, b1 ≤ n

Fn−b1 ↪→Mn π−→ T b1 .

Moreover if b1 = n, then π is a Riemannian isometry, hence (Mn, g) is a flat torus.

Now let us look at some other consequences of the existence of harmonic forms
of constant length. Thanks to the Albanese map we can lift the harmonic forms of
the Albanese torus on the manifold. Let us call α1, . . . , αb1 an orthonormal family
of lifted harmonic forms. Using the duality through the metric we can associate
to these harmonic forms b1 vector fields X1, . . . , Xb1 . These vector fields define a
sub-bundle H, which we will call the Horizontal, such that for all x ∈ M , Hx is
generated by X1(x), . . . , Xb1(x).

If we let V be the orthogonal complement of H with respect to the metric, which
we will refer to as the Vertical, then we have the following.
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Proposition 6. Let (Mn, g) be a compact Riemannian manifold and let b1 be its
first Betti number. If all harmonic 1-forms are of constant length, then there is
a distribution H given by an orthonormal frame of vector fields X1, . . . , Xb1 dual
to an orthonormal frame of harmonic 1-forms, such that the tangent bundle splits
orthogonaly as follows:

TM = V ⊕H.
Moreover the distribution V is integrable, and for any 1 ≤ i, j ≤ b1 and U ∈ V,
[Xi, Xj ] ∈ V and [Xi, U ] ∈ V.

Proof. This comes from the fact that the forms (αi)1≤i≤b1 are closed. Indeed for
any closed 1-form α we have the following equality for any X , Y in TM :

α([X,Y ]) = X.α(Y )− Y.α(X).

Thus for any i, j and k we have

αi([Xj , Xk]) = Xj .αi(Xk)−Xk.αi(Xj) = Xj · δik −Xk.δij = 0,

hence [Xj, Xk] is orthogonal to any Xi. If U and V are vertical vector fields, then
it is easily seen that for any 1 ≤ i ≤ b1,

αi([Xj , U ]) = 0 and αi([U, V ]) = 0.

�

2.2. A useful decomposition. Let (Mn, g) be a compact Riemannian manifold
with a unit vector field Z. Let V be the distribution generated by Z (which is
sometimes called the Vertical distribution) and H its orthogonal complement with
respect to g (which we will call Horizontal). Then the tangent bundle splits as
follows:

TM = V ⊕H.
If iZ(·) = Zy· is the interior product by Z, then we can define the space of

horizontal p-forms as
Λp(H) = Λp(M) ∩ ker(iZ).

Let us introduce the 1-form ϑ = Z[ dual to Z with respect to g. Then it is an
easy exercise to see that we have the following decomposition of p-forms:

Λp(M) = Λp(H)⊕
[
Λp−1(H) ∧ ϑ

]
.(2)

Notice that following this decomposition we have

dϑ = b+ η ∧ ϑ,
where b is a horizontal 2-form called the curvature of the horizontal distribution
H and η is the horizontal one form associated to the horizontal vector field −∇ZZ
with respect to g, a fact the reader may easily verify.

Let us introduce the horizontal exterior differential dH , which associates to a
horizontal differential form the horizontal part of its exterior differential. We also
introduce the multiplication operators

L : Λq(H)→ Λq+2(H), L := · ∧ b,
S : Λq(H)→ Λq+1(H), S := η ∧ ·.

Thanks to the decomposition (2), each p-form may be identified to a couple
(α, β) ∈ Λp(H) × Λp−1(H) of horizontal forms. Thus we can see the exterior
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differential d acting on p-forms as an operator from Λp(H)×Λp−1(H) to Λp+1(H)×
Λp+2(H). Then, we have the following proposition, where LZ is the Lie derivative
in the direction of Z, and where for any differential operator D, D∗ is its formal
adjoint with respect to g.

Proposition 7 ([Nag01]). With respect to the decomposition (2) we have for the
exterior differential acting on p-forms:

d =
(

dH (−1)p−1L
(−1)pLZ dH + S

)
,

and for the codifferential:

d∗ =
(

d∗H (−1)p−1L∗Z
(−1)pL∗ d∗H + S∗

)
.

3. The case of the first Betti number

being one less than the dimension

The aim of this section is to describe the (n+1)-dimensional orientable manifolds
having all of their harmonic one-forms of constant length, and with first Betti
number equal to n. All manifolds considered here are of dimension greater than or
equal to 3 because in dimension 1 and 2 we have only the circle S1 and the torus
T 2 which admit forms of constant length.

We will now give a more detailed discussion of the bundle-like metrics appearing
in the statement of Theorem 1. Start with an n-dimensional compact torus T n,
that is, a compact quotient of the form Rn/L where L ⊆ Rn is a co-compact lattice.
Given a closed 2-form ω on T n representing an integral cohomology class in H2

DR(T )
one constructs a principal S1 bundle S1 ↪→ N

π→ T n whose first Chern class equals
[ω]. At this stage we know that the manifold N has the structure of a 2-nilmanifold
with 1-dimensional center (see [PS61]).

Now the manifold N has a particular class of Riemannian metrics that can
be constructed as follows. Pick a flat Riemannian metric h on T n, a principal
connection 1-form ϑ on N and a positive smooth function f on T n. On N we
consider the Riemannian metric

g = π?h+ f ◦ π · ϑ⊗ ϑ.
These metrics are all S1-invariant, and, in fact, the metrics g already constructed
exhaust the class of S1-invariant metrics on N such that π is a Riemannian submer-
sion to (T n, h). Various properties of the metrics g can be read on the set (h, f, ω)
of defining data. For example g is a left-invariant metric if and only if f is constant
and ω is harmonic (with respect to h).

Definition 8. Let S1 ↪→ Nn+1 → T n be a 2-step nilmanifold whose center is one
dimensional. A minimal bundle-like metric on N is any Riemannian metric on
N arising from the previously explained construction, with defining data (h, f, ω)
such that f is a positive constant.

Thanks to this definition we can prove our characterization, which is recalled
below.

Theorem 9. Let (Nn+1, g) be a compact orientable connected manifold such that
all of its harmonic 1-forms are of constant length, and such that b1(Nn+1) = n.
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Then Nn+1 is a 2-step nilmanifold whose kernel is one dimensional and g is a
minimal bundle-like metric.

Proof. We deduce from Proposition 1 that we have the following fibration, with
minimal fibers:

S1 ↪→ Nn+1 π−→ T n,

where π is the Albanese map.
We begin by taking a basis (a1, . . . , an) of harmonic forms over the Albanese torus

and lift it to a basis of harmonic 1-forms (α1, . . . , αn) over Nn+1. Let X1, . . . , Xn

be their dual vector fields with respect to the metric; they span, by definition, H.
Now take Z the dual vector field to the 1-form Z[ = ∗(α1 ∧ · · · ∧ αn) (∗ is the

Hodge operator, thus this form is co-closed). Its length is constant by construction,
and can be assumed to be 1 without loss of generality. Furthermore Z belongs to
and spans V .

Thanks to Proposition 6, for any i, j,

[Z,Xi], [Xi, Xj ] ∈ V .(3)

Let us deduce some important facts from (3):
First, using the constant lentgh assumption we obtain the following sequence of

equalities:

g(∇XiXj, Z) = −g(Xj,∇XiZ) = −g(Xj,∇ZXi) = g(Xi,∇ZXj)︸ ︷︷ ︸
by (3)

= g(Xi,∇XjZ) = −g(∇XjXi, Z)

which implies that
g([Xi, Xj], Z) = 2g(∇XiXj , Z).

If we take Xk instead of Z we would obtain in the same way, for any 1 ≤ k ≤ n,

0 = g([Xi, Xj], Xk) = 2g(∇XiXj , Xk).

Hence for any 1 ≤ i, j ≤ n we finally get that

[Xi, Xj] = 2∇XiXj ∈ V .(4)

Second, remark that for any co-closed one form α we have∑
k

(
∇Xkα

)
Xk +

(
∇Zα

)
Z = 0.(5)

Taking for α each of the αi in turn, since [Xi, Xj ] = 2∇XiXj ∈ V , we deduce from
equality (5), that for i = 1, . . . , n,

g(∇ZXi, Z) = 0.

However as the Levi-Civita is torsion free, for i = 1, . . . , n,

−g(Xi,∇ZZ) = g(∇ZXi, Z) = g(∇XiZ,Z) + g([Z,Xi], Z) = g([Z,Xi], Z)

but [Z,Xi] ∈ V . Hence for any i = 1, . . . , n,

[Xi, Z] = 0(6)

and ∇ZZ ∈ V . However, Z being of constant norm we conclude that

∇ZZ = 0.(7)

Now from (7), (4) and (6) we easily get that Z is a Killing vector field.
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Hence, from (3) we have the existence of functions fij on N such that

[Xi, Xj ] = fijZ.(8)

However we would like to have some structural constants instead of the functions
fij . Using that Z is a Killing vector field we obtain for any X,Y ∈ TN ,

dZ[(X,Y ) = 2g(∇XZ, Y ).(9)

Thus, if we decompose dZ[ in the basis given by αi ∧ αj and Z[ ∧ αi for all i, j,
then, thanks to (7) and (9), we get that

dZ[ =
∑
i<j

fijαi ∧ αj .(10)

In other words dZ[ is horizontal and as it can be easily verified that LV (dZ[) = O
for any V ∈ V , it is projectable, i.e., there exists a unique 2-form β on the Albanese
torus such that dZ[ = π∗β. Remark that dβ = 0, thus β = β0 +dα by the Hodge-de
Rham theorem, with α ∈ Λ1(T b1) and β0 harmonic. Hence if ζ0 = Z[ − π∗α, then
dζ0 = π∗β0. But now β0 =

∑
ij cijai∧aj , where the cij are constants. This implies

that

dζ0 =
∑
ij

cijαi ∧ αj .(11)

We are now taking as a basis of vector fields the dual base (X0
1 , . . . , X

0
n−1, Z0)

of the base (α1, . . . , αn−1, ζ0) (i.e. αi(X0
j ) = δij , ker ζ0 = 〈X0

1 , . . . , X
0
n−1〉 and

ζ0(Z0) = 1). Then we have from (11):

[X0
i , Z0] = 0,

[X0
i , X

0
j ] = cij · Z0.

Thus we can build a homomorphism IA between the Lie algebra a defined by
Ai, . . . , An, An+1 and with brackets

[Ai, Aj ] = cijAn+1

all the other brackets being equal to zero, by taking IA(Ai) = X0
i for i = 1, . . . , n

and IA(An+1) = Z0.
Now if A is the simply connected Lie group associated to a, thanks to the com-

pactness of Nn+1 we can integrate the homomorphism IA to obtain an action of A
on Nn+1 (see corollaries 3 and 4 of theorem 2.9, page 113 in [Oni93]). Since each
orbit is open and Nn+1 is connected, this action is transitive. From this we deduce
(see F.W. Warner [War83], Theorem, 3.62) that Nn+1 is a Lie group. Thanks to
the constant of structures (cij) we deduce that it is a two-step nilpotent Lie group
(see M. Spivak [Spi79], volume I, Theorem 17 in chapter 10, for example) and we
inherit from IA that ζ0 is a principal connection 1-form. Concerning g, it is minimal
bundle-like by the above discussion. �

It is worth noticing that if the manifold is not orientable this is no longer true.
Indeed counterexamples can be obtained by taking the product of a Klein bottle
with a flat torus. A natural question arising is whether one can characterize the
left invariant metrics among the minimal bundle-like metrics, in term of properties
of harmonic forms. We first look at the 3-dimensional case.
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Theorem 10. Let (N3, g) be a compact orientable connected manifold such that
all harmonic 1-forms are of constant length, b1(N3) = 2, and such that the wedge
product of two harmonic 1-forms is an eigenform of the laplacian. Then (N3, g) is
a compact quotient of the 3-dimensional Heisenberg group and g is a left-invariant
metric.

Proof. From the added assumption we get that Z[ of the previous proof is an
eigenform of the laplacian. That is to say, there is some constant λ such that

∆Z[ = λZ[.

However, using the useful decomposition, knowing that Z[ is coclosed and dZb =
b = π∗(β) (following the decomposition (2), b corresponds to (b, 0) and Z[ corre-
sponds to (0, 1)), we must also have that

∆Z[ = d∗dZb = d∗b = (L∗b)Z[ = (L∗L · 1)Z[ = |β|2Z[,
which means that β is of constant length. But β is a 2-form on a 2-dimensional
torus, which also means that β is proportional to the volume form. In other words,
the function (which is unique in that case) in the equality (10) is a constant. Remark
that this also tells us that the eigenvalue is λ = |β|2 = f2

12. �

Now for the higher-dimensional case.

Theorem 11. For n > 2, let (Nn+1, g) be a compact orientable connected manifold
such that all harmonic 1-forms are of constant length, b1(Nn+1) = n and the wedge
product of any n − 1 harmonic 1-forms is an eigenform of the Laplacian. Then
(Nn+1, g) is a 2-step nilmanifold whose center is one dimensional and g is a left
invariant metric.

Proof. We use the same notations as in the proof of Theorem 9. From the new
assumption we get, thanks to the star Hodge operator, that for any harmonic 1-
form α, α ∧ Z[ is a co-closed eigenform. Using the decomposition (2) we associate
to α ∧ Z[ the pair (0, α). As α ∧ Z[ is coclosed ∆(α ∧ Z[) = d∗d(α ∧ Z[). Let us
use Proposition 7 without forgetting that α is harmonic, and noticing that as dZ[

is horizontal by the proof of Theorem 9, S = 0

d(α ∧ Z[) ≡
(
dH −L
LZ dH

)(
0
α

)
=
(
−Lα
dHα

)
=
(
−L(α)

0

)
and

d∗d(α ∧ Z[) ≡
(
d∗H L∗Z
−L∗ d∗H

)(
−L(α)

0

)
=
(
d∗H
(
−L(α)

)
L∗L(α)

)
,

but the last term is also equal to (0, λα) by the eigenform assumption, hence

d∗H(α ∧ dZ[) = 0.

But α and dZ[ are horizontal and projectable, thus in fact there is a 1-form a
and a 2-form β on the torus such that α = π∗a, dZ[ = π∗β and we can write

0 = d∗H(α ∧ dZ[) = π∗
(
d∗(a ∧ β)

)
.

In other words, for any 1-harmonic form a on the torus we have

d?(a ∧ β) = 0.(12)

Hence we are led to work on the torus.
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Let us take an orthonormal base (ei) of parallel vector fields over the torus. Then
for any form ω,

−d?ω =
∑
i

eiy∇eiω.

We want to apply that last equality to a ∧ β. First notice that (a is parallel)

∇ei(a ∧ β) = a ∧∇eiβ.

Contracting by ei one obtains

eiy
(
∇ei(a ∧ β)

)
= a(ei)∇eiβ − α ∧ (eiy∇eiβ).

Sum over i and use the coclosed condition (i.e. (12)) and you get

∇a#β + a ∧ d?β = 0.(13)

Now we take the interior product with ei of (13), with a = e[i , which gives

eiy∇eiβ + eiy(e[i ∧ d?β) = eiy∇eiβ + d?β − d?β(ei)e[i = 0.

We sum over i one more time to obtain

(n− 2)d∗β = 0

and by assumption n > 2, thus d∗β = 0; that is, β is harmonic over the torus.
Hence it follows that β is parallel and all the functions fij of (10) are constants,
which allows us to conclude. �

The Heisenberg groups being a model space of contact geometry, it is a natural
setting to study under our assumptions. In the contact case we obtain

Theorem 12. Let (N2m+1, ω, gω) be a compact contact manifold with a contact
form ω and an adapted Riemannian metric gω such that all harmonic 1-forms are
of constant length. Then (N2m+1, g) is a compact quotient of a Heisenberg group
and g is a left invariant metric.

Proof. From Theorem 1 we get that N2m+1 is a two-step nilmanifold and gω is
minimal bundle-like. We also get that gω = ϑ2 +π∗(h), where ϑ is a one form, such
that dϑ = π∗(β) for some closed 2-form β over the Albanese torus. Now Theorem
3.2 and Theorem 3.4 of H.P. Pak and T. Takahashi in [PT01] imply that for all
harmonic 1-forms α, if T is the Reeb vector field attached to ω,

T yα = α(T ) = 0,

which means that T = fZ for some function f , and as T and Z are of constant
unit length for the metric gω it means that ω = ϑ. Now, thanks to Theorem 1 we
know that T = Z is a Killing field. This implies that the almost-complex structure
J on kerω lives on the flat torus given by the Albanese submersion. Hence we are
in front of an almost-Kähler flat torus, but following [Ols78] and [Arm02], it has to
be Kähler, thus β is parallel. �
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4. Some remarks on the general case

The aim of this section is to point out the main differences between the case
b1 = n − 1 and b1 ≤ n − 2 for n-dimensional manifolds admitting one-harmonic
forms of constant length. We want to give some hint on the failure of our approach.

Our first remark is that one should restrict oneself to the study of locally irre-
ducible orientable Riemannian manifolds to avoid the following cases: the direct
product of a sphere of dimension p > 1 and a flat torus of dimension n− p gives a
manifold whose first Betti number is n − p, whose dimension is n and with n − p
harmonic 1-forms of constant length.

The second remark is in the following lemma, which shows the limitation of our
method. Indeed to apply the same ideas one needs far stronger assumptions.

Lemma 13. Let (Nn, g) be a compact locally irreducible manifold such that all
harmonic 1-forms are of constant length, b1(Nn) = n − p and possessing a point-
wise orthonormal base (ϑi) of the orthogonal complement of the harmonic 1-forms.
Moreover assume that (dϑi) are lifts of closed 2-forms on the Albanese torus. Then
(Nn, g) is a two-step nilpotent nilmanifold whose kernel is n− p dimensional.

Proof. TM = V +H, where H is spanned by X1, . . . , Xn−p the dual vector fields
to α1, . . . , αn−p, which are lifts of harmonic 1-forms on the Albanese torus, and V
is the orthogonal complement. We associate, thanks to the metric, the dual vector
fields (Zk) to the 1-forms (ϑk). As the αi are closed we get that for 1 ≤ i, j ≤ n−p,

[Xi, Xj] ∈ V .
Our assumptions imply that

dϑk ∈ Λ2H,
where Λ2H = Λ2M ∩

⋂
k ker iZk and that

dϑk = π?(βk),

where βk is a 2-form on Albanese’s torus. However, dβk = 0, hence for some
harmonic 2-form β0

k and some 1-form ak over the Albanese torus we have

βk = β0
k + dak.

Notice, that β0
k is non-zero; otherwise ϑk would be horizontal, which is not the

case by assumption. Hence if we consider the independent forms (as one can easily
verify)

θk = ϑk − π∗(ak),
then

dθk = π∗(β0
k).

Hence we can conclude as in the proof of Theorem 1. �

As the last section involved nilmanifolds, we could decide to focus on a family
of compact manifolds close to them, say solvmanifold. But even that assumption
is not enough to clarify the situation, as the next lemma with the following remark
points out.

Lemma 14. Let (Mn, g) be a solvmanifold all of whose 1-forms are of constant
length and whose first Betti number is n− 2. Then we have the following fibration
with minimal fibers:

T 2 ↪→Mn π−→ T n−2.
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Proof. This comes from the fact that the fibration in Proposition 5,

F 2 ↪→Mn π−→ T n−2,

gives a long exact sequence on the homotopy groups

· · · → πn(F 2)→ πn(Mn)→ πn(T n−2)→ πn−1(F 2)→ πn−1(Mn)→ . . . .

Now, T n−2 and Mn have only their fundamental group which is not trivial, hence
we have the following exact sequence on the fundamental groups:

0→ π1(F 2)→ π1(Mn)→ π1(T n−2)→ 0,

and πk(F 2) is trivial if k > 1. This means that π1(F 2) can be seen as a subgroup
of the solvable group π1(Mn), hence it is also solvable. Thus the fiber is compact
and with solvable fundamental group. However in dimension 2 the only compact
oriented manifold with solvable fundamental groups are the sphere and the torus,
but here the sphere is excluded because π2(S2) 6= 0. �

Without further assumptions we cannot expect a more precise result. Indeed
the example of the Sol geometry in dimension 3, or of any 2-step nilmanifold with
a 2-dimensional center will satisfy Lemma 14 with many different metrics, however
built in the same way, following the construction 8.1 in [BK03b].

As a conclusion, the rigidity of the cases b1 = n and b1 = n−1 do not propagate
to lower values of the first Betti number.
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