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1. Setting the scene

Finite dimensional real linear space R
n.

Mostly concerned with R
2 and R

3.
This means:

things are easy to visualize;

it is easy to draw pictures;

the words length, area and volume have (more or less) their
usual connotations (precise definitions come later).



1. Setting the scene

This space is given a norm: ‖ · ‖
which makes it into both a metric space and a topological space
which have good properties.

d(tx, ty) = td(x, y) (t ≥ 0)
The metric scales properly.

d(x + z, y + z) = d(x, y)
Translation invariant all translations are isometries.

The topology is locally compact.



Area

The metric does not determine area in the plane. (Nor volume in
R

3.) For example:

0

All these triangles have sides 1, 1, 2 in the `∞ metric but different
areas. There is no formula of a Heron type.



Area

BUT

because R
n is a locally compact group and

because any sensible definition of area should be translation
invariant

any sensible area is a Haar measure — unique up to a scalar
multiple.



The problem

What is the appropriate normalization of Haar measure?

“Appropriate” means “reflecting the geometry in some
suitable sense”.

For now, normalize by giving a suitable value for the area of
the unit disc (volume of the unit ball).



2. Dual Measures

Although Haar measure is not uniquely determined there is a
unique measure on R

n × (Rn)∗

To see this, let {x1, x2, . . . , xn} be a basis for R
n.

The dual basis is given by {x∗1, x∗2, . . . , x∗n} where
x∗i (xj ) = δij .

Let P(x1, x2, . . . , xn) be the parallelotope spanned by the
basis vectors.



2. Dual measures

If λ is a Haar measure in R
n, normalize Haar measure λ∗ in

(Rn)∗ so that

λ(P(x1, x2, . . . , xn))λ
∗(P(x∗1, x

∗

2, . . . , x
∗

n)) = 1.

λ∗ is the measure dual to λ.



2. Dual measures

Any other basis is of the form {Tx1,Tx2, . . . ,Txn} where T

is an invertible linear map.

Its dual is
{T ∗−1x∗1,T

∗−1x∗2, . . . ,T
∗−1x∗n}

because
(T ∗−1x∗i )(xj ) = x∗i (T

−1Txj) = δij .

Then we also have:

λ(P(Tx1,Tx2, . . . ,Txn)) × λ∗(P(T ∗−1x∗1,T
∗−1x∗2, . . . ,T

∗−1x∗n))

= det T (det T )−1.1

= 1.



2. Dual measures

Thus λ × λ∗ on R
n × (Rn)∗ is independent of basis;

in particular
(tλ)∗ = t−1λ∗.



2. Dual measures

If K is a closed, convex set containing 0 then:

K ∗ = {p : p(x) ≤ 1 ∀x ∈ K}.

If T is an invertible linear map (TK )∗ = T−1∗(K ∗) because
(T−1∗p)(Tx) = p(T−1Tx).

If λ × λ∗ is the Haar measure on R
n × R

n∗ then

vp(K ) := λ(K )λ∗(K ∗) (1)

is a linear invariant of K i.e.

vp(T (K )) = vp(K ).

Note that Equation (1) can be used to define λ∗.



3. Possible Normalizations.

We normalize Haar measure by assigning a number µ(B) to
be the area (in R

2) of the unit ball B .

If T is an invertible linear transformation, it is an isometry
between the spaces (R2,B) and (R2,T (B)). Hence, we
should require µ(B) = µ(T (B)).

In other words, the number we assign should be a linear
invariant of the convex set B .



3. Possible Normalizations

The simplest way to do this is to set µb(B) = π;
(the appropriate value in higher dimensions).

However, once we make a normalization in R
2 we

automatically get a dual normalization in (R2)∗.

This is obtained by setting µ(B)µ∗(B∗) = vp(B) (see
equation (1)).

In this case µ∗

b(B
∗) = vp(B)/π.

The roles can be reversed by setting µht(B) = vp(B)/π. In
other words, µ∗

b = µht and vice versa.



3. Possible Normalizations

Once we have two (or more) possible normalizations it is
possible to take convex combinations:

µ(B) := tµb(B) + (1 − t)µht(B).

Or other means, for example:

µsd(B) = (µb(B)µht(B))1/2 =
√

vp(B).

The subscript denotes that this definition is self-dual (and is
the only one).



3. Possible Normalizations

In R
2 another linear invariant that one might choose is:

µp(B) = `(∂B)/2

where ` denotes arc length (in the metric from B). (The
subscript p denotes perimeter.)

This number is, in general, hard to calculate.

Having defined area one could, in theory, define volume in R
3

by setting the volume of the ball to be 1/3 its surface area.
But this would present horrible computational problems!



3. Possible Normalizations

Another method is to assign a value for the area of a convex
set associated with B in a linearly invariant way.
For example:

If P is a smallest parallelogram (in higher dimensions
parallelotope) circumscribing B set µm∗(P) = 4; (in higher
dimensions 2n).
(It doesn’t matter if P is not unique – it usually is not.)

The choice of 4 (2n) is to fit with the Euclidean case.
The subscript m∗ is because this is the normalization called
mass* by Gromov.



3. Possible Normalizations

The dual normalization (Gromov’s mass) assigns the value 2 (in
higher dimensions 2n/n!) to the largest parallelogram
(cross-polytope) inscribed to B .
Instead of using parallelograms one can also use the (unique)
largest inscribed and smallest circumscribed ellipses (ellipsoids) to
B .
In either case we assign the area π (resp. εn) to this ellipse (resp.
ellipsoid). Thus:

µl(E ) = π

where E is the minimal circumscribed ellipse to B .
The dual measure using the maximal inscribed one is denoted by
µl∗.



3. Possible Normalizations

This gives us 8 (9 if we add the dual of µp) possibilities.

The spaces between these definitions can be filled with convex
combinations or other averages.

How to sort out this morass?



3. Possible Normalizations

First of all, there is an order relation between measures on R
n.

µ1 ≤ µ2 ⇐⇒ µ1(B) ≤ µ2(B) ∀B .

The set of normalizations is a lattice with this order.

(µ1 ∧ µ2)(B) := max(µ1(B), µ2(B)).

The mapping * is an order reversing map.

This yields (via various theorems and remarks) the following
diagram:



µl

µht

µsd

µb

µl∗

µm

`(∂B)/2

µm∗



4. Monotonicity.

We have already seen that:

1 Area should be invariant under isometries.

2 Area should coincide with the usual area when the norm is
Euclidean. We now add the following requirement:

3 Area should be monotonic: “smaller lengths gives rise to
smaller area”.



4. Monotonicity.

To be a bit more precise:
We would like the following to be true.

If R
2 is given two norms ‖ · ‖1, ‖ · ‖2 coming from unit discs

B1 B2 and if B1 ⊇ B2 so that ‖x‖1 ≤ ‖x‖2 for all vectors x

then we would like the area of a figure in the space
(R2, ‖ · ‖1) to be no larger than the area of the identical figure
in (R2, ‖ · ‖2).

One reason for this is aesthetic, it seems reasonable that
length should impose some restriction on area.

A second reason is more technical and comes from the notions
of category theory.
The morphisms are “short” maps.



Consequences of monotonicity

1 A particular normalization is monotonic if and only if its dual
is.

2 µp := `(∂B)/2 and its dual are not monotonic.

3 If a particular normalization is monotonic then it is continuous
from the Banach-Mazur distance.

4 The normalizations µl and µl∗ are (respectively) the smallest
and largest monotonic normalizations.



Consequences of monotonicity

Before coming to the proofs of these statements, there is a simple
Proposition.
Proposition A normalization µ is monotonic if and only if

µ(B1)

µ(B2)
≥ λ(B1)

λ(B2)

for all B1,B2 with B1 ⊆ B2 and λ some fixed Haar measure.
Proof The normalization µ generates measures µi on (Rn,Bi ) via
the equations

µi (A) := λ(A)µ(Bi)/λ(Bi ), i = 1, 2.

Then µ1 ≥ µ2 if and only if

µ(B1)

λ(B1)
≥ µ(B2)

λ(B2)
⇐⇒ µ(B1)

µ(B2)
≥ λ(B1)

λ(B2)
.



Proofs

1 This is easy.

2 Let H be the hexagon with vertices at
±(1,−1), ±(1, 1/2) ± (1/2, 1).
Let B be the usual square with vertices (±1,±1). Then
H ⊂ B .

2

2
µB(B) = 4

3/2

3/2

1/2

µH(H) = 7/2



Proofs

`(∂H) = 7, `(∂B) = 8.
Hence we have

µ(H)

µ(B)
=

7

8
<

15

16
=

λ(H)

λ(B)
.

The proposition now shows that µ is not monotonic.



Proofs

3. Let µ be a monotonic normalization.
Suppose B1 and B2 are two unit balls which are close in the
Banach-Mazur metric, ∆. Then, for some T and small η:

B1 ⊆ T (B2) ⊆ (1 + η)B1.

Then, from the Proposition,

µ(B1)

µ(B2)
=

µ(B1)

µ(TB2)
≥ λ(B1))

λ(TB2)
≥ (1 + η)−n.

Also, from the Proposition,

µ(B2)

µ(B1)
=

µ(TB2)

µ((1 + η)B1)
≥ λ(T (B2))

(1 + η)−nλ(B1)
≥ (1 + η)−n.

Therefore | log(µ1(B1)) − log(µ2(B2))| < n log(1 + η) ≤
n∆((Rn,B1), (R

n,B2)). Hence |µ(B1) − µ(B2)| < ε for
∆((Rn,B1), (R

n,B2)) sufficiently small.



Proofs

4. Let µ be a monotonic normalization and let E be the maximal
ellipse inscribed to an arbitrary unit ball B . Then, from the
Proposition,

µ(B)

µ(E )
≤ λ(B)

λ(E )
.

But µ(E ) = π so

µ(B) ≤ πλ(B)/λ(E ) = µ`∗(B).

Similarly for the other inequality.



Convexity

We now add a further requirement:
4. Area should be convex; it should satisfy a simplex inequality.
If S is any simplex in R

3 the area of any one facet should not
exceed the sum of the areas of the other three facets.

The normalizations µm and µl are not convex.

Consider R
3 with the cube B with vertices at (±1,±1,±1) as unit

ball. Consider the simplex S with vertices at
(0, 0, 0), (−1, 1, 1), (1,−1, 1) and (1, 1,−1)





The four normals to the facets of S are
(1, 1, 1), (0, 1, 1), (1, 0, 1) and (1, 1, 0).

The cross-sections of B orthogonal to these directions are:
(i) a regular hexagon of (Euclidean) side

√
2; and

(ii) three rectangles of size 2 × 2
√

2.

The facet parallel to the hexagon is an equilateral triangle of
side 2

√
2 and hence area 2/3 that of the hexagon.

The other facets are each 1/4 the area of the cross-section.



1 Using µm. The hexagonal cross-section has area 3 and the
rectangular cross-sections area 2.
Hence the facet with normal (1, 1, 1) has area 2 and the
others have area 1/2.
µm is not convex.

2 Using µl . Again, the rectangular cross-sections have area 2
and the corresponding facets area 1/2.
The hexagonal cross-section has area 3

√
3/2 and the

corresponding facet has area
√

3.
Since

√
3 > 3/2, µl is also not convex.



5. Non-symmetric norms.

In this final section let us look at the possibility of norms (unit
discs) that are not symmetric.

For example: a symmetric disc B but with the origin not at
the centre.



5. Non-symmetric norms.

C0

A

B

P

Q

Since the longest chord in each direction is the one through the
centre,

AO + OB ≤ PC + CQ.

On average the radial function is smaller than if the origin were at
C and so distances are, on average, larger than if the origin were
at C .
An extension of the monotonicity requirement would require that,
in this case, areas also be larger.



5. Non-symmetric norms.

C0

A

B

t

This can be made particularly precise for the Euclidean disc.
Let Et denote the Euclidean disc with the origin at a distance
t from the centre. In this case OA.OB = (1 − t2); on average
(geometric mean) distances increase (compared to the
Euclidean case) by a factor of (1 − t2)−1/2.

The (extension of) monotonicity requires that area also
increase in comparison to the Euclidean case.



5. Non-symmetric norms.

The only definitions which evidently do so are µht and µsd .

Modify µm and µl∗ by requiring that the inscribed figures be
centred at 0 (but µm is NOT convex).

For µb a slight modification gives strict inequality.

Open Question. If K is a non-symmetric convex set, vp(K ) is
minimal when the origin is at the Santaló point. Is it true that
the mean (in some sense) radial function is maximal (and
hence the mean norm is minimal) when the origin is at the
Santaló point?



5. Non-symmetric norms.

The dual of Et is an ellipse E ∗

t with one focus at the origin.

0C
((1 + t)−1, 0)((1 − t)−1, 0)

(−t(1 − t2)−1, (1 − t2)−1/2)

E∗

t

Et

t

The semi-major axis is of length 1/(1 − t2) and the
semi-minor axis is 1/

√

(1 − t2).
Thus vp(Et) = π2/(1 − t2)3/2 and µ(Et) = π/(1 − t2)3/2.
Therefore area increases by a factor of 1/(1− t2)3/2 compared
to the Euclidean case.
Thus µht looks like a good bet.



5. Non-symmetric norms.

However, instead of looking at these non-symmetric convex
sets let’s look at their duals.

As we just saw, E ∗

t is an ellipse with area π/(1 − t2)3/2 and
vp(E ∗

t ) = π2/(1 − t2)3/2 so that µ(E ∗

t ) = π/(1 − t2)3/2.

Therefore, µht is constant for every t and coincides with the
Euclidean measure.

On the other hand, these unit discs appear to be getting
larger and the metrics, therefore, correspondingly smaller
which would indicate that muht is also not monotonic.

This is not exactly true.



5. Non-symmetric norms

let p be a point of the dual space with Euclidean norm
‖p‖e = 1.
Then the norm ‖p‖∗ corresponding to E ∗

t is the support
function of Et evaluated at p. Similarly for −p.
These are the (Euclidean) distances from the origin to the
tangents to Et determined by p and −p.

Hence, ‖p‖∗ + ‖ − p‖∗ is the (Euclidean) width of Et in the
direction p which is constant and equal to 2.

Therefore, the average of these norms is constantly 1. On
average, the norm ‖.‖∗ is the same as the Euclidean norm and
it quite reasonable that the area should also be the same.

What is needed is a clear definition of what we mean by
saying one norm (or unit ball) is larger, on average than
another. However, it does look as though µht is a good (the
best??) normalisation to use for asymmetric norms.
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