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an Emphasis on the Heisenberg groups
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Abstract. Take a Riemannian nilmanifold, lift its metric on its universal cover.
In that way one obtains a metric invariant under the action of some co-
compact subgroup. We use it to define metric balls and then study the spec-
trum of the Dirichlet Laplacian. Using homogenization techniques we describe
the asymptotic behavior of the spectrum when the radius of these balls goes
to infinity. This involves the spectrum, which we call macroscopic spectrum,
of a so called homogenized operator on a specific domain. Furthermore we
show that the first macroscopic eigenvalue is bounded from above, by a uni-
versal constant in the case of the three dimensional Heisenberg group, and
by a constant depending on the Albanese torus for the other nilmanifolds.
We also show that the Heisenberg groups belong to a family of nilmanifolds,
where the equality characterizes some pseudo-left-invariant metrics.

1. Introduction and Statement of the results

This article deals with geometric properties of large balls in periodic Riemannian
manifolds. A Riemannian manifold (Nn, g) is periodic if it possesses a discrete
group Γ of isometries with a compact fundamental domain. Given x0 ∈ Nn, we
are interested in the asymptotic behavior of two geometric invariants of the metric
ball, Bg(x0, ρ), with radius ρ and centered at x0, as ρ tends to ∞:

• the Riemannian volume Volg
(
Bg(x0, ρ)

)
;

• the spectrum of the Dirichlet Laplacian on Bg(x0, ρ).
Our approach consists in rescaling the metric, i.e., replacing the original Rie-

mannian metric g on N with gρ = 1/ρ2g, so that Bg(x0, ρ) becomes Bgρ(x0, 1),
and applying homogenization techniques to the family of Riemannian manifolds
with boundary Nρ = (Bgρ

(x0, 1), gρ). There are several notions of convergence of
metric spaces (see [Gro81b], [Gro93]). It turns out that the balls Nρ converge, in
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the Gromov-Hausdorff sens, to a compact metric space if and only if the group Γ
contains a finite index subgroup Γ′ that is nilpotent, torsion-free, and finitely gener-
ated. This follows from a celebrated result of M. Gromov [Gro81a], characterizing
finitely generated groups of polynomial growth, completed by P. Pansu [Pan83]
and Van den Dries-Wilkie [vdDW84]. Therefore, actions of nilpotent groups seem
to provide the proper setting for application of homogenization techniques in Rie-
mannian geometry. According to Malcev, such a group uniquely embeds into a
simply connected nilpotent Lie group G, and G/Γ is called a nilmanifold. In the
sequel, we assume that N = G is equipped with a Γ-invariant Riemannian met-
ric. The manifold Nn can be viewed as the Riemannian universal covering of
Mn = G/Γ equipped with the quotient metric.

Although the results presented here are geometric in nature, we use homog-
enization techniques. Hence this article can be read under two different lights.

1.1 — From the geometric point of view: The Riemannian volume and the
Dirichlet spectrum of Bg(x0, ρ) are linked by Weyl’s asymptotic formula, which
states that if λk(ρ) is the kth eigenvalue of the ball of radius ρ and Vol(ρ) is its
volume, then as k →∞, there exists a universal constant c(n) such that

λk(ρ) ∼ c(n)
k2/n

Vol2/n(ρ)

One could expect that the asymptotic behaviors of the volume and the Dirich-
let spectrum when the radius of the balls increases would be related. This is not
the case; we shall see that they are described by two different limit metrics.

Problem 1. Make the asymptotic behavior of the volume of a ball with
respect to its radius, precise, and extract geometric information from it.

In the case of nilmanifolds there is a precise equivalent to the volume of balls
given by P. Pansu [Pan83], which depends on the algebraic structure. Let G1 = G,
and Gi+1 = [Gi, G]; then dh =

∑∞
i=1 dimGi is called the homogeneous dimension

of G, and
Vol(ρ) ∼ Asvol(g)ρdh .

The constant Asvol(g) is usually called the asymptotic volume. In the particular
case of tori, D. Burago and S. Ivanov [BI95] gave a lower bound on the asymptotic
volume, which is achieved if and only if the metric is flat (see also [Ver04] for an
alternate proof in dimension 2 using homogenization theory and [Bab91] for the
first proof in dimension 2).

To the nilpotent Lie group G, we can associate its limit group at infinity, G∞,
which is nilpotent and graded. Furthermore, thanks to a theorem of K. Nomizu
[Nom54], H1(M,R) can be identified with a subspace of the Lie algebra of G∞,
hence to a left invariant distribution H of vector fields over G∞. Thus to any
norm on H1(M,R) we can associate a left-invariant sub-finslerian structure on
G∞, hence, thanks to Chow’s theorem on accessibility, a left-invariant distance on
G∞. For a Euclidean norm we obtain a left-invariant sub-Riemannian structure.
The metric g induces two important norms on H1(M,R). The first one, called
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the stable norm, comes from the sup norm on the 1-forms over M , which induces
a norm (usually not Euclidean) on H1(M,R), and by duality on H1(M,R). The
second one, called the Albanese metric, comes from the L2 normalized norm on 1-
forms, which induces a Euclidean norm on H1(M,R), and by duality on H1(M,R).
The two distances induced by these two metrics on G∞ are often said to be of
Carnot-Caratheodory type. We call them, respectively, the stable distance and
the Albanese distance.

The following inequality, if not the best one, gives a hint of what we might
expect for all nilmanifolds.

Theorem 1. Let (Mn, g) be a nilmanifold. Let G∞ be the limit group at infinity
associated to the universal covering of Mn. Then the asymptotic volume of Mn

satisfies the following:

1. Asvol(g) ≥ Volg(Mn)
µ
(
Bal(1)

)
µ(DM )

;

2. in case of equality the stable norm coincides with the Albanese metric.

Here, µ is a Haar measure on G∞, Bal(1) is the unit ball of the Albanese distance
centered at the unit element, and DM is the image in G∞ of a fundamental domain
on the universal covering of Mn, by the canonical projection.

Concerning the spectrum of the Laplacian on balls, a theorem of R. Brooks
[Bro85] (see also Sunada [Sun89]) states that the bottom of the spectrum on the
universal cover is zero if and only if the fundamental group is amenable. The first
eigenvalue goes to the bottom of the spectrum as the radius of the ball goes to
infinity. R. Brooks’s theorem implies, in our case, as the fundamental group is
nilpotent hence amenable, that the first eigenvalue goes to zero as the radius goes
to infinity.

Problem 2. Make the speed of convergence to the bottom of the spectrum on
the universal cover with respect to the radius, precise, and extract more geometric
information from the spectrum of large balls.

To state our results to that problem, let us remark that to the Albanese
metric we can also associate a kind of Laplacian ∆∞ on G∞. ∆∞ is usually called
the Kohn Laplacian. It is a dilation invariant hypoelliptic second order differential
operator, which is symmetric and without a constant term.

Theorem 2. Let (Mn, g) be a nilmanifold, with universal cover M̃ , and let x ∈ M̃ .

Let Bg(x, ρ) be the corresponding Riemannian ball of radius ρ and center x ∈ M̃ ,
and let λ1

(
Bg(x, ρ)

)
be the first eigenvalue of the Laplacian for the Dirichlet

problem on Bg(x, ρ). Then

1. limρ→+∞ ρ2λ1

(
Bg(x, ρ)

)
= λ∞1 ≤ λ1(g,Alb);

2. in case of equality, the stable norm coincides with the Albanese metric,
hence all harmonic 1-forms are of constant length.

Here, λ1(g,Alb) is the first eigenvalue of the Kohn Laplacian arising from the
Albanese metric for the Dirichlet problem on Bal(1), the unit ball of the Albanese
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distance centered at the unit element. Furthermore, for tori this is a constant
dependent only on the dimension, and for the 3-dimensional Heisenberg group it
is also independent of the metric.

In the case of a 2-step nilmanifold with a 1-dimensional center, we can deter-
mine for which metrics equality holds. We call these metrics pseudo-left-invariant
(see section 6 for the definition). One of their main properties being that they arise
as fiber metrics over a flat torus (i.e. the nilmanifold submerges onto a flat torus).

Theorem 3. In the case of a 2-step nilmanifold whose center is one dimensional,
the Albanese metric and the stable norm coincide if and only if the metric is
pseudo-left-invariant.

Actually this behavior is shared by all the eigenvalues, and Theorem 2 is
partially a consequence of the following:

Theorem 4. Let (Mn, g) be a nilmanifold, with universal cover M̃ , and let x ∈ M̃ .

Let Bg(x, ρ) be the corresponding Riemannian ball of radius ρ, and center x ∈ M̃
and let λi

(
Bg(x, ρ)

)
be the ith eigenvalue of the Laplacian for the Dirichlet problem

on Bg(x, ρ).
Then there exists an hypoelliptic operator ∆∞ (the Kohn Laplacian of the

Albanese metric), whose ith eigenvalue for the Dirichlet problem on the unit ball
of the stable distance (centered at the unit element) is λ∞i , and such that

lim
ρ→∞

ρ2λi

(
Bg(ρ)

)
= λ∞i .

We call (λ∞i )i∈N the macroscopic spectrum.

1.2 — From the point of view of analysis, let

L = − ∂

∂xi
aij(x)

∂

∂xi
,

be a uniformly elliptic differential operator on Rn, and assume that the coefficients
aij are periodic, i.e., aij(x + k) = aij(x) for any k ∈ Zn and C∞. After rescaling
we get a family of operators

0 < ε ≤ 1, Lε = − ∂

∂xi
aij

(
x

ε

)
∂

∂xi
.

We can associate, to this family of operators, a so-called homogenized operator,

L0 = −qij
∂

∂xi

∂

∂xj
.

Now, if D is a domain of Rn, then we can consider the Dirichlet problem for this
family of operators, and hence we have eigenvalues and eigenfunctions, denoted
respectively by

λε
0 ≤ λε

1 ≤ λε
2 ≤ . . . and φε

0, φ
ε
1, φ

ε
2, . . .

We now have the following problem.
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Problem 1′. Study the convergence of λε
i and φε

i to λ0
i and φ0

i , respectively,
as ε→ 0.

In the case of Rn, this is the subject of Chapter III of [OSY92], and Chapter
11 of [JKO94], and of [CD99].

The operators Lε define Riemannian distances dε. So another related problem
is the following:

Problem 2′. Study the relationship between the distance dε and the distance
d0.

The papers [Dav93], [Nor94] and [Nor97] are related to this problem in con-
junction with the existence of bounds on the heat kernel (see also [KS00] for a
probabilistic approach).

The present paper is concerned with the problem above, when Rn is replaced
by a nilpotent Lie group N and Zn by a uniform lattice Γ of N . Homogenization
in this context, when N is stratified (graded), has been the subject of [BBJR95],
[BMT96] and [BMT97].

However our paper differs in three ways from the previous work. First of all,
we are not dealing with a stratified group, hence we must not only homogenize
the operator, but also the space, by using its associated graded Lie group. Sec-
ondly we begin by studying a family of elliptic operators, which happens to have
an hypoelliptic homogenized operator. And finally, our domain moves with the
operator. The relationship with the long time asymptotics of the heat kernel is
shortly studied in section 8.

2. Geometry of nilmanifolds

2.1. Nilpotent Lie Algebras

Let u be a Lie algebra. One says that it is nilpotent if the sequence defined by

u1 = u, ui+1 = [ui, u],

is such that for some k ∈ N, uk+1 = {0}. Let r be the smallest of such k; then we
say that u is an r-step nilpotent Lie algebra.

A distinguished family of nilpotent Lie algebras consists of the graded ones.
A nilpotent Lie Algebra u is graded if it admits a decomposition:

(1) u = V1 ⊕ · · · ⊕ Vr,

such that

1. Vi is a complement of ui+1 in ui;
2. [Vi, Vj ] ⊂ Vi+j .

It is quite important in our work that to such a graduation one can attach a
one-parameter group of automorphisms (τρ)ρ∈R+ called dilations such that:

τρ(x) = ρix for all x ∈ Vi.



6 Constantin Vernicos

In fact, the existence of such a family of dilations is equivalent to the existence
of a graduation. These dilations play the same role as the dilations in Euclidean
space.

Not all nilpotent Lie algebras are graded. But to each nilpotent Lie algebra,
we can associate a graded nilpotent one in the following way:

u∞ =
r∑

i=1

ui/ui+1,

the Lie bracket being induced. We will denote by π̃ : u → u∞ the induced projection
and by τ̃ρ the dilations in u∞.

The Homogeneous dimension of u is the number

dh =
r∑

i=1

idim
(
ui/ui+1

)
.

There is another way to make that graded Lie algebra appear: start with a
nilpotent Lie algebra u, remark that for all i, ui+1 ⊂ ui, and build a basis (Xi)i

of u by taking independent vectors Xd1+···+di−1+1, . . . , Xd1+···+di−1+di such that
the vector space Vi that they span is a complement of ui+1 in ui. Hence the direct
sum (1) holds. We shall denote by prVi

the projection induced on Vi by this direct
sum. Now we define a function τρ : u → u by

τρ(Xp) = ρα(p)Xp,

with α(p) = i if di−1 < p ≤ di, and d0 = 0.
We obtain a new Lie algebra uρ by modifying the Lie bracket in the following

way: for any X and Y in uρ, [X,Y ]ρ = τ1/ρ[τρX, τρY ]. Thus τρ becomes a Lie
algebra isomorphism from uρ =

(
u, [·, ·]ρ

)
to
(
u, [·, ·]

)
.

Now as ρ goes to infinity, uρ goes to u∞, in the sense that for i, j = 1, . . . , n,
we have

[Xi, Xj ]∞ = prVα(i)+α(j)
[Xi, Xj ].

Notice that all uρ have the same graded Lie algebra. We will denote by π̃ρ

the projection from uρ to u∞ (in fact we could avoid the subscript in π̃ρ, because
we can identify the Lie algebras as linear spaces).

Notice that if the Lie algebra is graded, then [X,Y ]ρ = [X,Y ], and τρ is a
Lie algebra automorphism. Otherwise, remark that for all X ∈ uρ

π̃
(
τρ(X)

)
= τ̃ρ

(
π̃ρ(X)

)
.

2.2. Remarks on exponential coordinates

Let G be the simply connected Lie group associated with the nilpotent Lie algebra
u. For nilpotent Lie groups, the exponential is a diffeomorphism between the Lie
algebra and the Lie group, hence thanks to the exponential coordinates, we can
identify G, as a differential manifold, with some Rn:

φ : Rn → G, φ : x = (x1, . . . , xn) 7→ expx1X1 . . . expxnXn.
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Let X∗
i be the dual form of Xi.

Moreover, we denote by δρ the following family of dilations:

δρ(x1, . . . , xn) = (ρα(1)x1, . . . , ρ
α(n)).

Notice also that dδρ = τρ. We define a family of group products ∗ρ by setting

x ∗ρ y = δ1/ρ[δρ(x)δρ(y)].

Finally
x ∗∞ y = lim

ρ→∞
x ∗ρ y.

Thus we get a family of nilpotent Lie groups Gρ = (G, ∗ρ), 0 < ρ ≤ ∞, whose
Lie algebras are isomorphic, respectively, to the algebras uρ, 0 < ρ ≤ ∞. We
also denote by πρ : Gρ → G∞ the function which sends x ∈ Gρ to x ∈ G∞, i.e.,
πρ = φ∞ ◦ φ−1

ρ (and to simplify π1 = π).
Observe that for 1 ≤ j ≤ d1, the xj live on G/[G,G].
If e ∈ G is the unit element and X ∈ u, then for ρ ∈ R, Xρ will be the ∗ρ

left invariant field in Gρ such that Xρ(e) = X(e). Thus to the basis (Xi) defined
in 2.1, we will associate the ∗ρ left invariant fields (Xρ

i ). Notice also that

dδρ(X
ρ
i ) = τρ(X

ρ
i ) = ρα(i)Xi.

We also define ∇H by

∇Hf = (X∞
1 · f, . . . , X∞

d1
· f).

3. Asymptotic behavior of the distance

3.1. The stable norm

3.1.a — Recall that (Mn, g) is a manifold whose universal covering is a sim-
ply connected nilpotent Lie group G. We shall denote by g̃ the lifted metric on G.
On the graded nilpotent Lie group G∞ associated to G, we obtain a natural distri-
bution by left multiplication of V1 = u1/u2 ⊂ u∞. We shall call that distribution
horizontal and denote it by H.

Let us remark that since the Lie algebra u∞ is generated by V1, a basis of V1

satisfies the so called Chow (or Hörmander) condition in the Lie group G∞. Let
us recall what the stable norm is:

Definition 5. Let ‖ · ‖∗∞ be the quotient of the sup norm on 1-forms, arising from
the metric g, on the cohomology H1(Mn,R). Then its dual norm on the homology
H1(Mn,R), is called the stable norm and we denote it by ‖ · ‖∞.

By a theorem of K. Nomizu [Nom54], H1(Mn,R) ≡ V1, thus we can transport
the stable norm on H. Now the Rashevsky-Chow theorem (see Theorem 2.4 page
15 in [BR96]) asserts that two points of G∞ can be joined by a curve tangent to H
(usually called an admissible curve). For an admissible curve γ : [a, b] → G∞, we
consider its stable length l∞(γ) =

∫ b

a
‖γ̇(t)‖∞dt. Hence we can define a distance
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d∞, which we call the stable distance, between two points of G∞, by taking the
infimum of the stable lengths of admissible curves between these points. This kind
of distance is usually said to be of Carnot-Caratheodory type. We shall call the
unit ball for the stable distance centered at 0 the stable ball and denote it by
B∞(1).

3.1.b — For any x, y ∈ Gρ, let us introduce dρ(x, y) =
dg(δρx, δρy)

ρ
. Then

the work of P. Pansu [Pan83], implies that for any x, y ∈ Gρ

lim
ρ→∞

d∞
(
πρ(x), πρ(y)

)
dρ(x, y)

= lim
ρ→∞

d∞
(
π ◦ δρ(x), π ◦ δρ(y)

)
dg(δρx, δρy)

= 1.

This implies the simple convergence of the functionals x 7→ dρ(0, π−1
ρ (x)) toward

x 7→ d∞(0, x) on B∞(1)\∂B∞(1).
3.1.c — Remark that the distance dρ is also given by the metric gρ on Gρ,

obtained by rescaling the pull back of the metric g̃ on G in the following way:

gρ =
1
ρ2

(δρ)∗g̃.

3.2. Gromov-Hausdorff convergence of balls

3.2.a — Recall that a family of spaces Xn, endowed with metrics dn and
measures µn, is said to converge in the Gromov-Hausdorff Measured sense toward
(X, d, µ) if and only if there is a family (fn)n∈N, where for all n, fn is an µn

measurable function from Xn to X, and there is a sequence (εn), decreasing to 0,
such that

1. the εn neighborhood of fn(Xn) in X is X;
2. for any x, y ∈ Xn,

∣∣∣dn(x, y)− d
(
fn(x), fn(y)

)∣∣∣ ≤ εn;
3. for any continuous function u : X → R we have∫

Xn

u ◦ fndµn →
∫

X

udµ.

3.2.b — Let µρ (resp. µg) denote the Riemannian volume associated to gρ

(resp. g), and let µ∞ be defined as follows. Let DΓ be a fundamental domain in G
and µ a Haar measure on G∞, then (recall that π is the canonical projection from
G→ G∞)

µ∞ =
µg(DΓ)
µ
(
π(DΓ)

) µ.

Adding to this that for any compact domain A in G∞, whose boundary is of
Haar measure 0, and any function f ∈ L1(A,µ∞), we have

(2) lim
ρ→∞

∫
π−1

ρ (A)

f
(
πρ(x)

)
dµρ(x) =

∫
A

fdµ∞.

Theorem 6. The family of metric spaces (Bρ(1), dρ, µρ) converges in the Gromov-
Hausdorff measure topology to (B∞(1), d∞, µ∞) as ρ goes to infinity.
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To prove the convergence (2) let A be a domain in G∞, then π−1
ρ (A) belongs

to Gρ and δρ ◦ π−1
ρ (A) belongs to G. We will denote by ∗ the law group of G. Let

z1, . . . , zk and ζ1, . . . , ζl be elements of Γ such that ζj ∗DΓ ∩ δρ ◦ π−1
ρ (A) 6= ∅ for

any j, and ⋃
i

zi ∗DΓ ⊂ δρ ◦ π−1
ρ (A) ⊂

⋃
j

ζj ∗DΓ.

Let us notice that

µg(DΓ) =
µg(DΓ)
µ
(
π(DΓ)

)µ(π(DΓ)
)

= µ∞
(
π(DΓ)

)
.

Then we get∑
i

inf
δρ◦π−1

ρ (x)∈zi∗DΓ

f(x)µ∞
(
π(DΓ)

)
≤∫

δρ◦π−1
ρ (A)

f
(
δ̃1/ρ ◦ π(x)

)
dµg(x) ≤

∑
j

sup
δρ◦π−1

ρ (x)∈ζj∗DΓ

f(x)µ∞
(
π(DΓ)

)
.

Dividing both sides by ρdh (see 2.1), we get:∑
i

inf
x∈πρ◦δ1/ρ(zi∗DΓ)

f(x)µ∞
(
δ̃1/ρ ◦ π(DΓ)

)
≤∫

π−1
ρ (A)

f
(
πρ(x)

)
dµρ ≤

∑
j

sup
x∈πρ◦δ1/ρ(ζj∗DΓ)

f(x)µ∞
(
δ̃1/ρ ◦ π(DΓ)

)
.

Then the extremal terms are Riemann sums that converge toward
∫

A
fdµ∞ .

3.2.c — We are now able to define and identify the asymptotic volume by

Asvol(g) = lim
ρ→∞

µg

(
Bg(ρ)

)
ρdh

= µ∞
(
B∞(1)

)
.

3.3. Convergence of the elements of the set L2

3.3.a — For ρ ∈ R, L2
ρ = L2

(
Bρ(1), dµρ

)
will be the space of square integrable

functions over the ball Bρ(1), which is a Hilbert space with the scalar product

(u, v)ρ =
∫

Bρ(1)

uv̄ dµρ.

Its norm will be denoted by | · |ρ.
Let L2 be the set of nets (uρ)ρ∈R+ such that for 1 ≤ ρ ≤ ∞, uρ ∈ L2

ρ. Thanks
to the Gromov-Hausdorff measured convergence of balls, we can give a meaning
to the sentence “the net (uρ)ρ∈R+ converges” in the following way.

Definition 7. Let (uρ)ρ∈R+ be an element of L2, we say that it strongly converges
to u∞ if and only if there exists a net (vα) in C0

(
B∞(1)

)
strongly converging to

u∞ in L2
∞, and such that

lim
α

lim sup
ρ

|vα ◦ πρ − uρ|ρ = 0.
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This allows us to introduce the weak convergence as follows.

Definition 8. Let (uρ)ρ∈R+ be an element of L2. We say that it converges weakly
to u∞, if for every strongly convergent net (vρ)ρ∈R+ of L2, we have

lim
ρ→+∞

(uρ, vρ)ρ = (u∞, v∞)∞.

For the properties of these convergences see our previous work [Ver04] and
[Ver01]. It suffices to say that they satisfy the usual properties of weak and strong
convergence in L2.

3.3.b — We shall say that a function f is periodic with respect to Γ (the
co-compact subgroup) if for every γ ∈ Γ and x ∈ G we have f(γ ∗x) = f(x). Thus
the metric g̃ lifted from Mn to G is periodic with respect to Γ.

To finish this section remark, that it is not difficult to adapt the proof of the
limit (2) to obtain (see [BBJR95] page 431).

Lemma 9. Let h be a function that is periodic with respect to Γ on G. Let hρ be
defined on Gρ by hρ(x) = h(δρx). Then (hρ)ρ∈R+ weakly converges in L2 toward

h∞ =
1

µg(DΓ)

∫
DΓ

hdµg.

I.e. for any uρ → u∞ strongly in L2, we have∫
Bρ(1)

uρhρdµρ → h∞

∫
B∞(1)

u∞dµ∞.

4. Behavior of the eigenvalues: setting

4.1. The Albanese metric

4.1.a — Let DΓ be a fundamental domain for the action of Γ on G. Let χi

be the unique solution (up to an additive constant) of

∆χi = ∆xi on DΓ, for 1 ≤ i ≤ r,

that is periodic with respect to Γ.
Let us define the operator ∆∞ by

∆∞f = − 1
Volg(M)

∑
1≤i,j≤d1

(∫
DΓ

gij −
n∑

k=1

gikXk · χj dµg

)
X∞

i ·X∞
j f(3)

= −
∑

1≤i,j≤d1

qijX∞
i ·X∞

j f .(4)

Remark that ηj(x) = χj(x)−xj is a harmonic function on G, and by construction
so are the 1-forms dηi on the nilmanifold. It is not difficult to show the following.
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Proposition 10. Let 〈·, ·〉2 be the scalar product induced on 1-forms by the Rie-
mannian metric g. Then

qij =
1

Vol(g)
〈dηi, dηj〉2 = qji.

Thus ∆∞ is an Hypoelliptic operator.

4.1.b — Recall that thanks to Nomizu’s work [Nom54], H1(Mn,R) ≡ V1,
hence by duality we get that the dimension of H1(Mn,R) is d1. Remark that (qij)
is the matrix of the L2 normalized scalar product on harmonic 1-forms, written
in the basis (dηi), hence on H1(Mn,R) by Hodge’s theorem (whose norm will be
written ‖ · ‖2). By duality it gives a scalar product on H1(Mn,R) (whose norms
will be written ‖ · ‖∗2).

The norm ‖ ·‖∗2 induces another Carnot-Caratheodory metric, which we shall
call the Albanese metric and denote by dal, as follows. Take on He ≡ H1(M,R)
(the horizontal subspace of the tangent space at the unit element) an orthonormal
basis Y1(e), . . . , Yd1(e) for ‖ · ‖∗2. It induces a left-invariant orthonormal frame
field on H, and for any admissible curve γ : [a, b] → G∞, we have that γ̇(t) =∑d1

i=1 αi(t)Yi

(
γ(t)

)
. Then the Albanese length of γ is lal(γ) =

∫ b

a

(∑d1
i=1 α

2
i (t)

)1/2
dt,

and the Albanese distance between two points is the shortest Albanese length
among all admissible curves joining them. A comparison of the L2 norm and the
L∞ norm gives the following

Proposition 11. For every 1-form α and γ ∈ H1(Mn,R) we have

‖α‖2 ≤ ‖α‖∗∞ ‖γ‖∞ ≤ ‖γ‖∗2.(5)

In other words the unit ball Bal(1) of the Albanese metric dal is included in B∞(1).

Proof. For α a 1-form we have

‖α‖2 =

(
1

Volg(M)

∫
M

|α|2dµg

)1/2

≤ sup
x∈M

|α(x)| = ‖α‖∗∞.

Hence our proposition follows, first by passing to the quotient and by duality, and
finally by integrating over admissible paths.

4.2. The eigenvalues, at last !

All the balls considered here, will be centered at a fixed point x0 of the universal
covering of Mn = (G/Γ, g). We study the eigenvalues of the Dirichlet problem on
Bg(ρ), the geodesic ball of radius ρ.{

∆φ = λφ on Bg(ρ)
φ = 0 on ∂Bg(ρ)

It is well known that the eigenvalues are a discrete family accumulating at infinity.
We shall denote them by λ1(ρ) ≤ λ2(ρ) ≤ · · · ≤ λi(ρ) . . .
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R. Brooks’s theorem [Bro85] on the first eigenvalue of the whole group implies
that as ρ goes to infinity, λ1(ρ) → 0. We are going to estimate how fast it converges
in our case.

4.2.a — On each Gρ (see 3.1.c), we pulled back the lifted metric of Mn on
G, g̃, and rescaled it in the following way

gρ =
1
ρ2

(δρ)∗g̃.

This gives a net of Riemannian manifolds (Gρ, gρ)ρ∈R+ . Let Bρ(1) be the unit
geodesic ball for the metric gρ, and consider the Dirichlet problem for ∆ρ the
Laplacian associated to gρ, i.e.,{

∆ρφ = ψ on Bρ(1);
φ = 0 on ∂Bρ(1).

To a function f from Bg(ρ) to R let us associate a function fρ on Bρ(1) by
fρ(x) = f(δρ ·x). Then it is an easy calculation to see that for any x ∈ Bρ(1),

ρ2
(
∆f
)
(δρ ·x) =

(
∆ρfρ

)
(x).

This implies that the eigenvalues of ∆ρ on Bρ(1) are exactly the eigenvalues
of ∆ on Bg(ρ) multiplied by ρ2.

Enlightened by what happens on tori we would like to show that the net of
resolvents of the Laplacians (∆ρ)ρ∈R+ compactly converges towards the resolvent
of ∆∞, which implies the convergence of the spectrum towards the spectrum of
∆∞ for the Dirichlet problem on B∞(1) (see Theorem 15, 17 and 21 of [Ver04]).

4.3. Upper bound on the eigenvalues, lower bound on the asymptotic volume and
the equality cases

Recall that Bal(1) is the unit ball for the Albanese metric on G∞, centered at the
unit element. Let D be a bounded domain of G∞, and denote by λ∞i (D) the ith

eigenvalue of ∆∞ on D for the Dirichlet problem. Then by Proposition 11, we have
B∞(1) ⊃ Bal(1). Thus by the min-max property, for any i, we obtain

(6) λ∞i (B∞(1)) ≤ λ∞i (Bal(1)).

Following the maximum principle (see J.-M. Bony [Bon69]), equality holds if and
only if the two balls coincide, and thus the norms in Proposition 11 also coincide.
The same argument also shows that we have equality in the following estimate if
and only if the stable norm and the Albanese metric coincide.

Proposition 12. Let (Mn, g) be a nilmanifold. Let G∞ be the limit group at infinity
associated to the universal covering of Mn. Then the asymptotic volume of Mn

satisfies the following inequality:

Asvol(g) ≥ µg(Mn)
µ
(
Bal(1)

)
µ
(
π(DΓ)

) .
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Here, µ is a Haar measure on G∞, Bal(1) is the unit ball for the Albanese distance
and DΓ a fundamental domain on the universal covering of Mn.

Proof. From 11, for any Haar measure µ, one gets the following inequality:

µ
(
Bal(1)

)
≤ µ

(
B∞(1)

)
.

We can conclude by taking the Haar measure µ∞ for µ (see section 3.2), giving
the asymptotic volume.

5. Homogenization and proof of Theorem 4

The first step consists in showing the convergence of the metric geodesic balls with
respect to the Gromov-Hausdorff measure topology (completed in 3.2).

5.1. Asymptotic compactness

5.1.a — Let us now define the various functional spaces involved. Recall (see 3.3.a)
that for ρ ∈ R+

, L2
ρ = L2

(
Bρ(1), dµρ

)
is the Hilbert space of square integrable

functions over the ball Bρ(1) with the norm | · |ρ.
5.1.b — Following the usual nomenclature, we will be interested in the fol-

lowing spaces, for an r-step nilmanifold (see section 2.1):

H1
ρ

(
Bρ(1)

)
=
{
v
∣∣∣ v,Xρ

i · v ∈ L
2
(
Bρ(1), dµρ

)
, 1 ≤ α(i) ≤ r

}
(7)

(
resp. H1

∞
(
B∞(1)

)
=
{
v
∣∣∣ v,X∞

i · v ∈ L2
(
B∞(1), dµ∞

)
, 1 ≤ i ≤ d1

})
.

(8)

These spaces become Hilbert spaces when endowed with the quadratic forms
‖ · ‖ρ, defined by

‖v‖2ρ = |v|2ρ +
∑

1≤α(i)≤r

∥∥Xρ
i · v

∥∥2

ρ
(9)

(
resp. ‖v‖2∞ = |v|2∞ +

∑
1≤i≤d1

∥∥X∞
i · v

∥∥2

∞

)
.(10)

We will denote by H1
ρ,0

(
Bρ(1)

)
the closure in H1

ρ

(
Bρ(1)

)
, with respect to the norm

‖ · ‖ρ, of the space of C∞
(
Bρ(1)

)
functions with compact support in Bρ(1).

5.1.c — We can define a self adjoint operator on L2
ρ, whose resolvent will be

Rρ
λ forλ ∈ R, thanks to the Friedrichs extension of the Laplacian (sub-Laplacian

for ∆∞) defined on H1
ρ,0

(
Bρ(1)

)
, endowed with the following quadratic form

‖v‖2ρ,0 = |v|2ρ + (v,∆ρv)ρ.
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Now for a bounded net in
(
H1

ρ,0

(
Bρ(1)

))
ρ∈R+

with respect to these quadratic

forms we have the following Lemma.

Lemma 13. Let (uρ)ρ∈R+ be a net with uρ ∈ H1
ρ,0

(
Bρ(1)

)
for every ρ ≥ 1, and

assume the existence of a constant C such that for every ρ ≥ 1, we have

‖uρ‖ρ,0 ≤ C.

Then there is sub-net which is strongly convergent in L2.

Proof. Let B be a compact set such that
⋃

ρ∈R+ πρ

(
Bρ(1)

)
⊂ B ⊂ G∞. We are

going to show that the strong convergence in L2(B,µ∞) implies the strong conver-
gence in L2. Then the compact embedding of H1

∞
(
B
)

in L2
(
B,µ∞

)
will conclude

the proof.
Let us first notice that the periodicity with respect to Γ, and the co-compactness

of Γ gives the existence of two constants α and β such that (we suppose the norms
are defined on B, and identify B and π−1

ρ B)

α|v|∞ ≤ |v|ρ ≤ β|v|∞ .

Let us start by taking a net (vρ), strongly converging in L2(B,µ∞) to v∞. We also
assume vρ ◦ πρ ∈ H1

ρ,0

(
Bρ(1)

)
for every ρ and is zero outside Bρ(1) (because it is

all we need).
First we will prove that v∞ ∈ L2

∞ (we mean that, outside B∞(1), v∞ can
be considered equal to zero), indeed, the strong L2 convergence implies the exis-
tence of a subnet of (vρ) which simply converges almost everywhere to v∞. Hence
the Gromov Hausdorff convergence implies that v∞ is zero almost everywhere on
B\B∞.

Thus, let us take cp ∈ C∞0
(
B∞(1)

)
, p ∈ N, such that (cp)p∈N is a sequence of

functions strongly converging to v∞ in L2
∞. We have

|cp ◦ πρ − vρ ◦ πρ|ρ ≤ β|cp − v∞|∞ + γ|v∞ − vρ|∞.

Now let ε > 0. Then for p large enough, β|cp − v∞|∞ ≤ ε. We fix p large enough,
and take ρ large enough for the second term to converge to 0, which gives us the
strong convergence we needed (see Definition 7).

Now to conclude, observe that from the assumptions, the net (uρ ◦ π−1
ρ ) (if

need be we extend this function by zero outside Bρ(1)) is bounded in H1
∞
(
B
)
,

hence using the compact embedding of H1
∞
(
B
)

in L2(B,µ∞) (with the right reg-
ularity assumption on the boundary of B), we can extract a strongly converging
net in L2(B,µ∞) and by what we just did in L2.

5.2. Compact convergence of the resolvents

For λ > 0 and ρ > 1, let aρ
λ(u, v) = (∆ρu, v)ρ + λ(u, v)ρ and Gρ

λ be the operator
from L2

ρ to H1
ρ,0 ⊂ L2

ρ such that

(11) aρ
λ(Gρ

λf, φ) = (f, φ)ρ ∀φ ∈ H1
ρ,0.
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For any u, v ∈ H1
∞,0, let

a∞λ (u, v) =
∫

B∞(1)

qij X∞
i u X∞

j v dµ∞ + λ(u, v)∞.

Then we define Gλ : L2
∞ → H1

∞,0, by

(12) a∞λ (GλF,Φ) = (F,Φ)∞ ∀Φ ∈ H1
∞,0.

The aim of this part is the following theorem, after noticing that Rρ
λ = −Gρ

−λ

and R∞λ = −G−λ.

Theorem 14. For every λ < 0, the net of resolvents (Rρ
λ)ρ∈R+ of the net of Lapla-

cians (∆ρ)ρ∈R+ converges compactly to R∞λ , the resolvent of ∆∞ from the ho-
mogenized problem, i.e, for any net (uρ)ρ∈R+ of L2 weakly converging, the net
(Rρ

λ · uρ)ρ∈R+ of L2 strongly converges to R∞λ · u∞.

The proof is an adaptation of Tartar’s method of oscillating test functions
(see Chapter 8 of [CD99] for the classical method).

Proof. First step:
Let fρ be a weakly convergent net to f in L2. Then up to subnets

uρ = Gρ
λfρ → ũλ strongly in L2;(13)

Pρ = (gij
ρ )∇Gρ

λfρ → P̃λ weakly in L2.(14)

One obtains (13) because the net (fρ)ρ∈R+ is uniformly bounded in L2, and
for all ρ ∈ R, fρ is also bounded in H−1

ρ , the dual space of H1
ρ,0. Thus thanks to

equality (11) and Lemma 13, we can extract a strongly converging net in L2 from
the uniformly bounded net (Gρ

λfρ)ρ∈R+ (with respect to the norms (‖ · ‖ρ,0)ρ∈R+).
To get (14), simply remark that (Pρ)ρ∈R+ is also bounded in L2.

Now for any φ∞ ∈ L2
∞, by passing to the limit in equation (11), we obtain

(15)
∫

B∞(1)

P̃λ ·∇Hφ∞ dµ∞ + λ(u∗λ, φ∞)∞ = (f, φ∞)∞.

Before passing to the next step, remark that P̃λ is horizontal. Indeed denoting
by P i

ρ and P i
λ the coordinates of Pρ and P̃λ, we have

P i
ρ = (gij

ρ )∇Gρ
λfρ = ρ2−α(i)−α(j)

(
gij(δρx)

)
∇Gρ

λfρ.

So if α(i) ≥ 2, then this net of coordinates strongly converges to 0 in L2, because(
gij(δρx)

)
∇Gρ

λfρ is also bounded for any ρ ∈ R+.

Second step: It consists in showing P̃λ =
(
qij
)
∇Hũλ on B∞(1), as it induces

ũλ = Gλf .
We just give the ingredient needed to copy the classical proof (see also [Ver04]

section 4.3).
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Consider χk(y) (see 4.1.a) such that its mean value on a fundamental domain
is zero, and for every k = 1, . . . , d1, define the oscillating function

wk
ρ(x) = xk −

1
ρ
χk(δρx). Then we have(16)

wk
ρ → xk strongly in L2.(17)

Using the usual trick in Tartar’s method, we obtain for every ϕ ∈ C∞0
(
B∞(1)

)
and for ρ large enough, for the support of ϕ to be in πρ

(
Bρ(1)

)
:∫

Bρ(1)

gij
ρ

(
Xρ

j uρ

(
Xρ

i (ϕ ◦ πρ)
)
wρ −Xρ

jwρ

(
Xρ

i (ϕ ◦ πρ)
)
uρ

)
dµρ

=
∫

Bρ(1)

fρ wρ ϕ ◦ πρ dµρ − λ

∫
Bρ(1)

ϕ ◦ πρ uρ wρ dµρ.
(18)

To pass to the limit in this identity, we use the following facts:

Fact 1:
(
Xρ

i (ϕ ◦πρ)
)
wk

ρ strongly converges to (X∞
i ϕ)xk in L2 because, writ-

ing the left multiplication by x in Gρ as lρx, we have

Xρ
i (ϕ ◦ πρ)|x = dϕπρ◦lρx(e) ◦ dπρ|lρx(e) ◦ dl

ρ
x ·X

ρ
i (e).

Now by definition lρx → l∞x and πρ → idG∞ , which explains why

Xρ
i (ϕ ◦ πρ) → X∞

i ϕ

pointwise (and weakly L2 from the claim in the proof of section 3.2).
Fact 2: For 1 ≤ i, j ≤ d1, gij

ρ X
ρ
i w

k
ρ is periodic with respect to δ1/ρΓ and

weakly converges in L2, by Lemma 9, towards its mean value

qjk =
1

µg(DΓ)

∫
DΓ

(
gij(y)

(
δik −Xiχ

k(y)
))

dµg.

Fact 3: For α(i) +α(j) > 2, gij
ρ X

ρ
i w

k
ρ = ρ2−α(i)−α(j)gij(δρx)X

ρ
i w

k
ρ , thus this

term weakly converges in L2 towards 0.

Hence the identity (18) becomes

∫
B∞(1)

(P̃ j
λxk − qjkũλ)X∞

j ϕdµ∞ =
∫

B∞(1)

f xk ϕ dµ∞ − λ

∫
B∞(1)

ϕ ũλ xkdµ∞.

(19)

Furthermore, if we put φ∞ = ϕxk into equation (15) and subtract the result
from the equality (19), then we obtain the following identity in terms of distribu-
tion.

−
d1∑

j=1

X∞
j

(
P̃ j

λxk − qjkũλ

)
= −

d1∑
j=1

X∞
j P̃ j

λ xk ⇐⇒ P̃ k
λ =

d1∑
j=1

qjk X∞
j ũλ.
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5.3. Conclusion

Theorem 14 gives the compact convergence of the resolvents. Hence we can use
Theorem 21 in [Ver04], which states that if the resolvents are compact, and they
converge compactly, then the net of kth eigenvalues converges to the kth eigenvalue
of the limit operator.

6. Emphasis on the Heisenberg Groups in the equality case

The aim of this part is to characterize metrics for which the inequality (6) is
an equality (see also Theorem 2) for a class of nilmanifolds that contains the
Heisenberg nilmanifolds. The first thing to remark, which is alway true, is that
equality holds if and only if the stable norm and the Albanese metric are equal.
In that case, all harmonic 1-forms are of constant pointwise norm (same proof as
in [Ver04]). Now let us introduce the pseudo-left-invariant metrics.

Definition 15. Let Nn+1 = Γ\G be a nilmanifold such that G is 2-step nilpotent
with one dimensional kernel. Let p be a submersion of Nn+1 onto a flat torus Tn.
Let (α1, . . . , αn) be the lift of an orthonormal basis of harmonic 1-forms over the
torus, and choose a 1-form ϑ of Nn+1 such that dϑ = p∗b, where b is a closed 2-form
over the torus (in other words we chose a connection). Let gϑ be the Riemannian
metric such that the dual basis of (α1, . . . , αn, ϑ) is orthonormal. Thus p becomes a
Riemannian submersion. We will call such a metric pseudo-left-invariant or bundle-
like.

The idea is that if the 2-form b has constant coefficients, then ϑ can be chosen
so that the above construction gives a left invariant metric. Thus this pseudo-left-
invariant metric can be seen as a perturbation of a left invariant metric, obtained
by perturbing a left invariant basis of vector fields.

We are now able to give our precise claim.

Lemma 16. Let (H2n+1, g) be the 2n+ 1-dimensional Heisenberg group, equipped
with a periodic metric. Then its stable norm coincides with its Albanese metric if
and only if g is pseudo-left-invariant.

Remark also that in the case of the 3-dimensional Heisenberg group, the
function λ1(g,Alb) in Theorem 2 is actually a constant that does not depend on
the metric. This is due to the fact that, up to isometries, there is only one left-
invariant sub-Riemannian metric in that case (see chapter IV of [Ver01]). Hence
in that case, the theorem has a similar form as the theorem for tori (see [Ver04]),
for which the function is also constant because up to isometries there is only one
Euclidean metric on Rn.

Actually, we have a result that is slightly more general than Lemma 16. We
focus on 2-step nilmanifolds, whose Lie algebras have a 1-dimensional center.
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Lemma 17. Let (Mn+1, g) be a 2-step nilmanifold whose center is of dimension 1.
Then its stable norm and its Albanese metric coincide if and only if the metric is
pseudo-left-invariant.

As the Albanese metric and the stable norm coincide if and only if all har-
monic 1-forms are of constant norm, Lemma 17 is a consequence of the main
theorem in [NV04]:

Theorem 18 (P.A Nagy, C. Vernicos [NV04]). Let (Mn+1, g) be a Riemannian
manifold with first Betti number equal to n, all of whose harmonic 1-forms are of
constant norm. Then (Mn+1, g) is a 2-step nilmanifold whose center is of dimension
1, and g is pseudo-left-invariant.

7. Graded nilmanifolds with totally geodesic fibers over a Torus

There is one last particular case we would like to study, the case where the nilman-
ifold is graded (i.e. its algebra is nilpotent and graded as defined in section 2.1),
and the metric on (Mn, g) is as follows. We suppose that the first Betti number
b1(Mn) = k, and we recall that H is the horizontal distribution coming from V1

(see sections 3.1.a and 2.1). Moreover we assume that we have the following Rie-
mannian submersion, with totally geodesics fibers and with a metric equivariant
on the fibers:

[M,M ] ↪→ (Mn, g)
p−→ (Tk, ǧ),

where dpx is an isometry (we write ĝ = g|H) from (Hx, ĝx) to (Tp(x)Tk, ǧp(x)).
Then, in the case of equality in Theorems 1 and 2, the Albanese map is

a Riemannian submersion, which implies that ǧ is flat. Which in turn, using our
assumptions implies that the metric g is left invariant (indeed see Chapter 9 Section
F in [Bes87]). In other words:

Proposition 19. Let (M, g) satisfy the above assumptions. The Albanese metric
and the stable norm coincides if and only if the metric is left invariant.

In other words, we could say heuristically that for sub-Riemannian metrics
the equality case in Theorem 2 (which holds in that context too, see [Ver01] for
the convergence of the spectrum) characterizes the left-invariant sub-Riemannian
metrics.

8. On the long time asymptotics of the heat kernel

Let (G/Γ, g) be a nilmanifold and (G, g̃) its universal cover with the lifted met-
rics. Recall that we associated to this Lie group the net (Gρ, gρ) of Riemannian
manifolds. Let us focus on the heat kernel:

(20)

{
∂u
∂t + ∆u = 0 in ]0,+∞[×G
u(0, x) = uo(x)
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Let us introduce the rescaled functions on Gρ,

uρ(t, x) = ρdhu(ρ2t, δρx), ρ > 0.

Then an easy computation shows that u is a solution of (20) if and only if uρ is a
solution of

(21)

{
∂uρ

∂t + ∆ρuρ = 0 in ]0,+∞[×Gρ;
uρ(0, x) = ρdHu0(δρx).

Thus the study of u(t, ·) as t goes to infinity is related to the study of uρ(1, ·)
as ρ→∞. We can imitate the proof of Theorem 14 to obtain:

Theorem 20. The net of resolvent (Rρ
λ) weakly converges to the resolvent (R∞λ ) of

∆∞ on G∞.

Imitating the proof of Theorems 4 and 6 in [ZKON79], as in [BBJR95], we
get the following theorem (let dal(e, x) = |x| be the Albanese distance between the
unit element and x).

Theorem 21. The fundamental solution k(t, x, y) of (20) has the following asymp-
totic expansion

k(t, x, y) = k∞(t, π(x), π(y)) + t−
dh
2 θ(t, x, y).

Here k∞(t, x, y) is the fundamental solution of

∂u∞
∂t

+ ∆∞u∞ = 0 in ]0,+∞[×G∞,

and θ(t, x, y) → 0 uniformly as t → ∞ on |x|2 + |y|2 ≤ at, for any fixed constant
a > 0.

The next theorem follows by integrating the previous one.

Theorem 22. Let u0 ∈ L1(G)∩L∞(G). Then u(t, x), the solution of (20), has the
following asymptotic expansion:

u(t, x) = c0t
− dh

2

∫
G

u0(y)dy + t−
dh
2 θ(t, x),

and θ(t, x) converges uniformly to 0 for |x| < R, where R is a positive constant,
and c0 depends on ∆∞.
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