Coniques et diverses coordonnées

DEUG MIAS 2000-2001. TD OMS 4

Exercice 1: Une échelle posée contre un mur est modélisée (de profil) par un segment AB de longueur l. On y fixe un point P (un échelon par exemple) tel que la longueur $AP = \lambda$.

Le point A se déplace sur l'axe Ox (le sol) et le point B se déplace sur l'axe Oy (le mur). Déterminer l'équation de la courbe décrite par le point P; En déduire que c'est une conique dont on déterminera la nature.

Exercice 2:

- 2.a Déterminer la nature des coniques d'équations
 - * $x^2 + y^2 + 2x = 0$;
 - * $x^2 + y^2 + 2x = -1$.

2.b Déterminer, en fonction du paramètre λ , la nature de la conique d'équation $\lambda x^2 + y^2 - 2(\lambda + 1)x + 2\lambda y - \lambda = 0$.

Lorsqu'il s'agit d'une conique à centre, déterminer les coordonnées du centre. Quel courbe décrit le centre en fonction de λ ?

Exercice 3: Déterminer les sommets et les couples foyer-directrice de l'hyperbole d'équation y = 1/x.

Exercice 4 : Soient *a*, *b* et *c* trois réels.

- **4.a** En coordonnées polaires, que représentent les équations $\rho = a$ et $\theta = b$?
- **4.b** En coordonnées cylindriques, que représentent les équations $\rho = a$, $\theta = b$ et z = c? Quelles sont les intersections de $\rho = a$ et $\theta = b$? De même pour $\rho = a$ et z = c?
- **4.c** En coordonnées sphériques, que représentent les équations r = a, $\theta = b$ et $\phi = c$? Quelles sont les intersections de r = a et $\theta = b$? De même pour r = a et $\phi = b$?

Exercice 5 : Soit C le cercle d'équation $(x-1)^2+y^2=1$. Donner l'équation de C en coordonnées polaire ρ et ϕ .

Exercice 6: Exprimer en coordonnées cylindriques l'équation du cône de glace, dont l'équation en coordonnées cartésiennes est $z = \sqrt{x^2 + y^2}$