Exercice 1 : Soient les vecteurs
\[
\overrightarrow{a} = 3\overrightarrow{i} + 2\overrightarrow{j} - \overrightarrow{k}, \quad \overrightarrow{b} = 2\overrightarrow{i} - \overrightarrow{j} + \overrightarrow{k}, \quad \overrightarrow{c} = \overrightarrow{i} + 3\overrightarrow{j}
\]
calculer
\[
\overrightarrow{a} + \overrightarrow{b}, \quad \overrightarrow{a} - \overrightarrow{b}, \quad \overrightarrow{a} \cdot \overrightarrow{i}, \quad \overrightarrow{a} \cdot \overrightarrow{b}, \quad (\overrightarrow{a} \cdot \overrightarrow{c}) \cdot \overrightarrow{b} - (\overrightarrow{a} \cdot \overrightarrow{b}) \cdot \overrightarrow{c}
\]

Exercice 2 : On considère les vecteurs \(\overrightarrow{V_1}(1, -2, 5), \overrightarrow{V_2}(2, -\frac{3}{2}, a)\). Déterminer le réel \(a\) pour que \(\overrightarrow{V_1}\) soit orthogonal à \(\overrightarrow{V_2}\).

Exercice 3 : On considère les trois points \(O(0,0,0), A(\frac{3-\sqrt{3}}{2}, \frac{3+\sqrt{3}}{2}), B(2,2,2)\). Calculer : \(\overrightarrow{OA} \cdot \overrightarrow{OB}, \|\overrightarrow{OA}\|, \|\overrightarrow{OB}\|\) et \(\overrightarrow{AO} \cdot \overrightarrow{AB}\). Quelle est la nature du triangle \(OAB\)?

Exercice 4 :
4.a Dans le plan rapporté à un repère orthonormé, on considère les points \(A(1,2)\) et \(B(4,1)\). Quelle est l’aire du triangle \(OAB\)?

4.b Dans l’espace rapporté à un repère orthonormé direct, on considère les points \(A(1,2,3), B(4,1,2)\) et \(C(2,5,1)\). Calculer les composantes du vecteur \(\overrightarrow{AB} \land \overrightarrow{AC}\) et l’aire du triangle \(ABC\).

Exercice 5 : On considère quatre points \(A, B, C\) et \(D\) de l’espace.

5.a Calculer
\[
\overrightarrow{AB} \land \overrightarrow{AC} - \overrightarrow{BC} \land \overrightarrow{BA}, \quad \overrightarrow{CA} \land \overrightarrow{CB} - \overrightarrow{DA} \land \overrightarrow{DB} - \overrightarrow{DB} \land \overrightarrow{DC} - \overrightarrow{DC} \land \overrightarrow{DA}
\]

5.b Déterminer la valeur de l’expression \(\overrightarrow{AB} \cdot \overrightarrow{CD} + \overrightarrow{AC} \cdot \overrightarrow{DB} + \overrightarrow{AD} \cdot \overrightarrow{BC}\). En déduire que les hauteurs d’un triangle sont concourantes.

Exercice 6 : Calculer
\[
\overrightarrow{U} \land (\overrightarrow{V} \land \overrightarrow{W}) + \overrightarrow{V} \land (\overrightarrow{W} \land \overrightarrow{U}) + \overrightarrow{W} \land (\overrightarrow{U} \land \overrightarrow{V}).
\]
(On admettra la formule du double produit vectoriel:
\[
\overrightarrow{a} \land (\overrightarrow{b} \land \overrightarrow{c}) = (\overrightarrow{a} \cdot \overrightarrow{c}) \overrightarrow{b} - (\overrightarrow{a} \cdot \overrightarrow{b}) \overrightarrow{c}.
\]