

I3M TP3 GLMA203

Geogebra

Introduction

Ce TP est une initiation au logiciel Geogebra. Pour utiliser ce logiciel trois possibilités

- 1. Suivez ce lien http://www.geogebra.org/cms/fr/download et démarrer en ligne en utilisant « Applet Start ».
- 2. Suivez ce lien http://www.geogebra.org/cms/fr/download, puis cliquez sur « Webstart » et sauvegarder. Cela devrait créer une icône sur votre bureau à partir de laquelle vous pourreez démarrer geogebra.
- 3. Ouvrez un terminal et tapez

geogebra4 &

Dans tous les cas, une fenêtre ressemblant à ce qui suit devrait apparaître :

Pour rediger votre compte-rendu, vous utiliserez Libre-office (open-office). Vous y inclurez vos dessins et vos réponses et enverrez le fichier à votre chargé de TP. Créez un dossier geogebra où vous sauvergarderez vos conctructions

N'OUBLIEZ PAS DE SAUVEGARDER À INTERVALLE RÉGULIER.

Exercice 0 : (Prise en main)

- **0.a** Déterminer où se trouve La fenêtre algèbre, le champ de saisie et la fenêtre graphique.
- **0.b** Déterminer où se trouve les boutons outils et cliquez dessus pour vous familiarisez avec.

- **0.c** En cliquant droit sur la fenêtre graphique que pouvez-vous faire?
- **0.d** Trouvez où se trouve la commande annulez, qui vous permet d'annulez votre dernière construction.

Première partie

Initiation

I Géométrie

Exercice 1: (construction d'un rectangle)

1.a

1	•	Construire un segment $[A, B]$.	
2	+	Construire la perpendiculaire à la droite (AB) passant par B.	
3	• A	Construire un nouveau point <i>C</i> sur cette perpendiculaire.	
4	-	Construire la parallèle à (AB) passant par C .	
5	+	Construire la perpendiculaire à (AB) passant par A .	
6	\times	Construire le point d'intersection <i>D</i> .	
7	>	Construire le polygone <i>ABCD</i> .	
8		Sauvegarder la construction.	

1.b Determiner au moins deux autres méthodes pour construire un rectangle.

Exercice 2:

- **2.a** Construire un hexagone régulier, sans utiliser l'outils polygone régulier. On mettra les cercles qui aboutissent à la construction en pointillés et on utilisera l'outil de mesure d'angle à chaques sommet de l'hexagone.
- **2.b** Construire le cercle circonscrit à un triangle, sans utilisez l'outil cercle passant par trois points. On mettra les droites de construction en pointillés.

Exercice 3: (tangentes à un cercle)

3.a

1	\odot	Construire un cercle de centre A passant par un point B .	
2	• A	Construire un point <i>C</i> exterieur au disque.	
3	•	Construire le segment joignant A à C en vert foncé avec une épaisseur de 5 .	
4	••	Construire le milieu D du segment $[A, C]$.	
5	\odot	Construire le cercle de centre D et de diamètre $[A,C]$ en pointillé.	
6	\times	Construire les points d'intersections E et F des deux cercles en rouge.	
7	No.	Tracer les droites (CE) et (CF) en violet avec une épaisseur de 5.	

- 3.b Quels sont les points que vous pouvez déplacer?
- **3.c** Faites la même construction en utilisant l'outil adapté. Quel est la différence?

II Analyse

Exercice 4: (Polynomes quadratiques)

- **4.a** Ouvrir un nouveau fichier Geogebra. Afficher la fenêtre algèbre, le champs de saisie et les axes (menu affichage ou dispositions « Algèbre et géométrie »))
 - 4.b Taper $f(x)=x^2$ et puis entrée. Quel forme de graphe obtenez-vous?
- **4.c** En mode déplacer $|\cdot\rangle$, cliquez sur le polynôme dans la fenètre algèbre et utilisez les flèches haut \uparrow et bas \downarrow .
 - (i) Quelle est l'influence sur le graphe du polynome?
 - (ii) Quelle est l'influence sur l'équation du polynome?
- **4.d** En mode déplacer, cliquez sur le polynôme dans la fenètre algèbre et utilisez les flèches gauche \leftarrow et droite \rightarrow .
 - (i) Quelle est l'influence sur le graphe du polynome?
 - (ii) Quelle est l'influence sur l'équation du polynome?
- **4.e** Toujours en mode déplacer, double cliquer sur l'équation du polynome. En utilisant le clavier, changer l'équation en $f(x) = 3x^2$ (utiliser une asterisque *, ou bien un espace pour entrer la multiplication).
 - (i) Noter vos observations.
- (ii) Faites de nouvelles modifications en modifiant la valeur du coefficient multiplicateur (en mettant une valeur négative par exemple). Noter vos observations.

Exercice 5:

- **5.a** Ouvrir un nouveau fichier Geogebra. Afficher la fenêtre algèbre, le champs de saisie et les axes (menu affichage).
 - **5.b** *Construction*. Dans le champs de saisie :

1	a=1	créer la variable a.
2	f(x)=a*x^2	Entrée le polynôme quadratique f .

- **5.c** Faire un clique droit sur la variable a dans la fenêtre algèbre et selectionner « afficher l'objet ». Que se passe-t-il?
 - **5.d** *Construction d'un curseur.*

3	a = 2	créer la variable b en utilisant l'outil <i>curseur</i> .
4	$f(x)=a*x^2+ b$	Entrée le polynôme quadratique <i>f</i> . (Geogebra remplacera la fonction avec sa nouvelle definition)

5.e Changer les valeurs de a et b en déplaçant les points des curseurs.

Exercice 6:

6.a Ouvrir un nouveau fichier Geogebra. Afficher la fenêtre algèbre, le champs de saisie et les axes (menu affichage).

1	f(x)=abs(x)	Entrée la fonction f valeur absolue
2	g(x)=3	Entrée la fonction constante <i>g</i>
3	3 intersecter les deux fonctions.	

- 1. Déplacer la fonction constante à l'aide de la souris ou des flèches.
- 2. Déplacer la fonction valeur absolue à l'aide de la souris ou des flèches.

Exercice 7:

- **7.a** Ouvrir un nouveau fichier Geogebra, et entrée la fonction g(x)=1/x.
- **7.b** Créez deux curseur a = 1 et b = 2. Faite varier les curseurs entre [0,5] avec un incrément de 0,05.
- **7.c** Créez le point A = (a,0) et le point B intersection de la courbe avec la droite passant par A et perpendiculaire à l'axe des x.
- **7.d** Créez le point C = (b,0) et le point D intersection de la courbe avec la droite passant par C et perpendiculaire à l'axe des x.
 - 7.e Dans le champs de saisie taper e=intégrale[g,a,b].
- **7.f** Créez le point E = (b, e) et activez sa trace. Que se passe-t-il quand vous bouger le curseur de b? et de a?
- **7.g** Changer $g(x) = e^x$ et définir F = (b, e + 1) en activant la trace de ce dernier. Donner la valeur 0 à a et bouger le curseur de b, que se passe-t-il?

Exercice 8: (superposition)

1	a=2	Créer trois curseur a_1 , ω_1 et φ_1
2	$g(x)=a_1*sin(\omega_1 x + \varphi_1)$	Entrez la fonction sinusoïdal <i>g</i>

8.a Observez l'influence des paramètres sur le graphe de la fonction g en changeant les valeurs des curseurs.

(3	a=2	Créer trois curseur a_2 , ω_2 et φ_2
4	4	$h(x)=a_2*sin(\omega_2 x + \varphi_2)$	Entrez la fonction sinusoïdal <i>h</i>
į	5	somme(x)=g(x)+h(x)	Créer la somme des deux fonctions

- **8.b** Modifier les couleurs des trois fonctions pour qu'elles soit facilement identifiable.
- **8.c** Avec les curseurs mettez $a_1 = 1$, $\omega_1 = 1$ et $\varphi_1 = 0$. Pour quelles valeurs de a_2 , ω_2 et φ_2 la somme a-t-elle l'amplitude maximale?
 - **8.d** Pour quelles valeurs de a_2 , ω_2 et φ_2 la somme est-elle nulle?

III Nombres complexes

Exercice 9:

- **9.a** Ouvrir un nouveau fichier Geogebra.
- **9.b** En utilisant le clavier virtuel (menu affichage) définir les variables $\theta=1$ et $\rho=2$.
 - **9.c** Saisir $u=cos(\theta)+i*sin(\theta)$ puis entrée et ensuite v=1/u dans le champs de saisie.
 - **9.d** Définir $z=\rho*u$.
 - **9.e** Faite apparaître de les curseurs associés à θ et ρ .
 - **9.f** À l'aide de l'outil polygone, construire un quadrilatère *ABCD*.
- 9.g Définir les quatres points A'=z*A, B'=z*B,C'=z*C et D'=z*D et ensuite construire le polygone A'B'C'D'.
 - **9.h** Faites varier les variables θ et ρ , qu'observez-vous?

Exercice 10:

- **10.a** Ouvrir un nouveau fichier Geogebra.
- **10.b** Définir la variable $\theta = 2 * pi$ puis le point M d'affixe $z=e^{(i*\theta)}$. Soit S le point d'affixe $1 + z + z^2$.
- **10.c** Construire le point *S* et activer sa trace.
- **10.d** Déterminer, algébriquement, les parties réelle et imaginaire de l'affixe du point S, que l'on appellera a et b, en fonction des coordonnées cartésiennes (x,y) du point M. Placer sur votre graphique le point T d'affixe a+ib afin de vérifier que S et T sont confondus.
- **10.e** On se place dans le cas où le point S est distinct du point S. À l'aide de Geogebra, conjecturer la position relative des points S0, S1, S2, Démontrer que pour tout réel S3 est un réel. Conclure sur la conjecture précédente.
- **10.f** Soit D le point d'affixe $1 + z + \overline{z}^2$. Construire ce point D et activer sa trace. *Indication*: On construira d'abord le point M' d'affixe \overline{z} en écrivant dans le champs de saisie M'=x(M)-i*y(M).
- **10.g** Déterminer, algébriquement, les parties réelle et imaginaire de l'affixe du point D, que l'on appellera c et d, en fonction des coordonnées cartésiennes (x,y) du point M. Placer sur votre graphique le point E d'affixe c+id afin de vérifier que D et E sont confondus.

IV Algèbre linéaire

Exercice 11: Dans un nouveau fichier geogebra, ouvrir le tableur (menu affichage)

11.a Dans le tableur, entrez la matrice $\begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \\ 3 & 1 & 2 \end{pmatrix}$. Sélectionnez la plage de cellules

correspondant à la matrice et utiliser l'outil $\frac{1}{3}\frac{2}{4}$ pour créer la matrice M.

- **11.b** Dans le champs de saisie tapez N=M[^](−1) puis I=N*M. Qu'observez-vous?
- 11.c Résoudre le système d'équations linéaires suivant

$$\begin{cases} 3x + y + z + 2t &= 1 \\ 2x - 5y + z + 5t &= -3 \\ x + y - z + t &= 4 \\ -x + 2y + z - t &= -2 \end{cases}$$

Exercice 12: Dans un nouveau fichier geogebra

12.a Définir deux curseurs a et b.

Créer deux vecteurs en tapant dans le champs de saisie u=vecteur((1,2)) et v=vecteur((2,-1)). Puis créer le vecteur somme a*u + b*v.

Créer le point M=(10,7) et déterminer a et b pour que le vecteur somme arrive en M.

12.b Définir les vecteurs u_1=vecteur((1,0)) et v_1=vecteur((0,1)).

Définir a_1=u_1 M et b_1= v_1 M. Ainsi que u_2=a_1 u_1 et v_2=b_1 v_1. Déplacer le point M.

Expliquer ce que sont a_1 , b_1 u_2 et v_2 .

Deuxième partie

Deux problèmes

V Formule de Pick

Exercice 13 : M. Pick a un verger planté de pommiers suivant un quadrillage parfaitement régulier à mailles carrées. Il a l'habitude d'y faire paître ses moutons en tendant une clôture fermée d'un arbre à l'autre.

Un mouton ayant besoin d'un carré unitaire d'herbe, son problème consiste à connaître le nombre de moutons qu'il pourra placer dans son polygone clôt, connaissant :

- le nombre d'arbres sur la clôture (que nous noterons *C*),
- le nombre d'arbres intérieurs à la clôture (que nous noterons *I*).

Nous noterons A l'aire délimitée par la clôture.

Premier exemple

Combien de moutons pourra-t-il placer dans le polygone dessiné ci-contre?

Fabriquer un exemple analogue de votre cru.

Cas des rectangles de largeur 1

Réaliser un tableau où figurent les valeurs de *A* et *C* pour quelques rectangles de largeur 1 comme celui qui est dessiné ci-contre.

En déduire une formule plausible (pour ces rectangles) qui permette d'écrire *A* en fonction de *C*.

Cas des rectangles de largeur 2

Réaliser un tableau où figurent les valeurs de *A*, de *C*, et de la formule trouvé au *B* pour quelques rectangles de largeur 2 comme celui qui est dessiné ci-contre.

Modifier un peu la formule du B pour trouver une formule plausible (pour ces rectangles) qui permette d'écrire A en fonction de C et I.

Polygones quelconques

Tester sur quelques exemples le fait que la formule trouvée fonctionne sur la plupart des polygones. Y a-t-il des exceptions?

Essayer d'adapter la formule trouvée pour la rendre utilisable dans les cas où le polygone a un ou des "trous".

Guide pour des preuves

(pour des polygones non troués)

- 1. Prouver que la formule fonctionne pour des rectangles.
- 2. Prouver alors que la formule fonctionne pour des triangles rectangles (en s'aidant du fait qu'un triangle rectangle est un demi-rectangle).
- 3. Montrer que si la formule fonctionne pour deux polygones ayant une clôture commune, elle fonctionne aussi pour le polygone obtenu en éliminant entre eux cette frontière commune.
- 4. Conclure pour les polygones qui peuvent être "découpés" en triangles rectangles.

VI Spirales

Exercice 14: (Spirales)

14.a Observe cette spirale. Elle est construite à partir d'un triangle équilatéral.

Pour la dessiner il faut :

- (i) Construire un triangle équilatéral ABC (AB = 2)
- (ii) Tracer un arc de cercle de centre A et de rayonAB à partir de B et jusqu'au prolongement de CA.Quelle fraction du cercle représente cet arc?).
- (iii) Tracer un arc de cercle de centre *C* se raccordant au précédent jusqu'au prolongement de *BC*.
- (iv) Tracer un arc de centre *B* et ainsi de suite.
 - **14.b** Calcule la longueur des 3 arcs de la spirale sachant que AB = 2 cm.
 - **14.c** Observe cette spirale, elle est construite autour d'un carré.

Écris les explications nécessaires pour la dessiner. Reproduis ce dessin. On supposera que la longueur d'un côté est 1,5 cm

14.d Si *a* désigne la largeur du côté du carré désigne à l'aide de *a* :

- la longueur du 1er arc
- la longueur du 2ème arc
- la longueur du 3ème arc
- la longueur du 4ème arc

Désigne à l'aide de *a* la longueur totale.

14.e Si *b* désigne le rayon du cercle circonscrit au carré, désigne à l'aide de *b*

- la longueur du 1er arc
- la longueur du 2ème arc
- la longueur du 3ème arc
- la longueur du 4ème arc

Désigne à l'aide de *b* la longueur totale.

14.f Autour d'un pentagone régulier. Fais le même travail qu'avec le carré.

14.g Autour d'un hexagone régulier. Fais le même travail qu'avec le carré.

- **14.h** Quel est la longueur de la spirale obtenue à l'aide d'un polygone régulier à n côtés, tous de longueur 1?
- **14.i** Peux-tu déterminer la forme de la spirale quand le nombre de cotés du polygone augmente, en restant toujours sur le même cercle. Quel est la longueur de cette spirale limite?